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5 CHAPTER 1
INTRODUCTION

_______,,,__\
0 R -
PR *. e

Since the early 1970's, tremendous growth has been seen in the development of
computer software for weapon systems. Part of this development is a result of the
N development of microprocessors and distributed processing and networking. With
v miniaturization of components in computer systems came the ever-increasing role

of software in the weapon systems. The software is called upon to perform more
" complex tasks than ever before, e.g., weapon's coordination, scheduling, and
b control. This increased role has also meant a dramatic increase in software
costs. In 1975, it was estimated that softwar~ costs exceeded hardware costs by a
factor of three or four for U.S. Air Force weapons systems.! 1In 1977, the costs
of software alone to the entire U.S. economy ranged from $10 to $19 billion.?2

S
.

AR VoV T gL N L ST LT L o

, With such an increasing reliance on computer systems, there is a major prob-
g lem in developing "error-free" programs. For large scale real-time embedded com-
puter systems such as the TRIDENT-I Fire Control System (TFCS) and its follow-on,
TRIDENT-II, it is an impossible task to check every conceivable logic path in the
" computer code for every combinatica of possible inputs, to discover "programming
errors." Researchers and practitioners of software code development have looked
to various tools to cut down on the number of errors in the design and develop-
ment stage. Included among these tools or approaches are: structured code, a
"top-down" approach to the software design, and the development of a number of
automated verification and validation (V&) tools for program checkout; however,
they have not proven to be a complete answer. A quote from the July 1973 Air
Force Magazine states:

U _w
vy
r! * > '

£ A s
Spi ol Y g

"The world's most carefully planned and generously funded
software program was that developed for the Apollo series of
lunar flights. The effort attracted some of the nation's
best computer programmers and involved two competing teams,
Checking the software as thorough as the experts knew how
to make it. In the aggregate, about $600 million was spent
on software for the Apollo program. Yet almost every major
fault of the Apollo program, from false alarms to actual
mishaps, was the direct result of errors in computer soft-

ware."3
Another problem that the U.S. Government and the Department of Defense (DOD), SN
in particular, are facing with software procurement is the inability to establish gﬂgi
and enforce software reliability goals from contractors. "How does one develop o

guidelines or standards that can be used to ensure a certain quality in the soft-
ware as is currently imposed in military standards for hardware development?"
A more basic question that needs to be answered first is: '"What is meant by soft-
ware reliability?" First, specific goals or objectives need to be established.

1-1
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= This report defines software reliability as '"the probability that a given oy

, software program will operate without failure for a specified time in a specified Lﬁ

v environment." The specified enviromment is particularly emphasized as it consti-

@ tutes one of the major assumptions for many of the reliability models discussed in 53

ﬂ this report. If the testing environment is quite a bit different from the actual b

0 operating enviromment, the program's reliability cannot be accounted for in that e

’ environaent. Software error or failure is defined as "any occurrence attributable

* to software in which the system did not meet its pérformance requirements." These T

b definitions are consistent with the majority of such definitions found in the &4

) literature.

B Knowing the current status of the program reli~bility can determine when %ﬁ

ﬁ testing should be completed and the program released for operational use. It caa "’

N also aid the software manager in determining how best to allocate his limited -

jj resources (manpower, computer time) among the various progrsm modules for testing. FJ

e The current program reliability can be used in making decisions regarding design K

~ tradeoffs between reliability, costs, performance, and schedule. Another use is

ﬁi in evaluating various software engineering approaches or tools to find the one f

N that leads to the "most reliable'" program with (hopefully) the minimum cost. The &3

B literature is sadly lacking on controlled studies which indicate the performance i
o of software tools in eliminating errors in software code. TR

£
LT

The purpose of this report is to provide a survey of the various approaches
vhat have appeared in the literature concerning the estimation or mudeling of a .
program's reliability. This report describes the underlying assumptions for each Eﬂ
of the models and provides a data requirements list for implementation. The
various models are contrasted with each other and the relative merits or drawbacks

[P
& A
«=a’

€
e S

3h are zlso highlighted. This report provides a practical guide for the implementa- FF
Hf' tion of these procedures on a software program. Finally, the report gives any Eﬂ

e

results of studies undertaken to analyze the performance of these procedures.

Unfortunately, this is one of the areas in which little has been done. Most of

these studies are eitbcr based upon simulated data or data sets for which the data :?
W

L

)

Pl
o
.

O}

e were collected for purposes other than reliability modeling. As a result, some of

the k2y assumptions upor which these models or approaches rest are violated. An
additional purpcse of this report is to provide the assumptions and data require- ?j
ments for the various models. Steps will be taken in the software development for &
TRIDENT-II to ensure the compatibility of the data with the model assumptions.

,
.
al
Sl
L
P
[
25,
.
)
;
L
-

o ',

)
M N L8 TS

Over the last 15 years, these models and estimation procedures have evolved. j
There are basically three different approaches that have been identified in the '
literature: Error Seediug/Tagging Models, the Data Domain Approach, and the Time
Domain Approach. Chapter 2 of this report describes the Error Seeding/Tagging h
Models, Chapter 3 describes the Data Domain Approach, and Chapter 4 describes ¥
the Time Domain Modeling efforts. Chapter 5 describes any studies and their con-
clusions in comparing the performance of these various approaches on actual data
sets. Finally, Chapter 6 presents a number of "quick'" estimates of reliability. N

3

N
~
1,
J
~‘
1ty

Before beginning the description of these various approaches, it must be kept '
in mind throughout this report that software reliability modeling is just one of &3
many tools. It cannot provide all of the answers that the software managers must
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face. It must be taken as a bit of information, which along with others, is lielp~
ful in making a realistic judgement concerning a program's status. Because of the
current controversy about which of the models ic best and because of tue uncer-
tzinty about the performance of the software reliability modeling approaches, it
is emphasized that the model that is best suited to the data be applied. The
resulting estimate of reliability may be used as another source of information in
determining program status. '
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. CHAPTER 2
hi ERROR SEEDING/TAGGING MODELS
;ﬂ This approach, first proposed by Mills,? involves "seeding" a given program

with a number of known errors. The assumption is made that the distribution of
the "seeded" errors is the same as the distribution for the inherent errors in
L the program. The program is then given over to a testing team for V&V. Some of

' the errors discovered by the testing team are seeded errors while others are in-
' herent in the program. Using these counts, the total number of errors inherent in
, the program can be estimated. In particular, if there are N errors inherent in
1 the program and n are randomly inserted with r errors being subsequently detected
l by the quality assurance (QA) team [k (k<r) being seeded errors], it can be shown

. _w 4
Lhes

e, A0

‘3 that the maximum likelihood estimate (MLE) of N is:

- N = [ELE—i-Ei] ) (2.1)
\.1

iﬁ with [ ] being the greatest integer function.

1 The biggest drawback to this Seeding Approach is the assumption that is made
.i about the distribution of seeded errors being the same as the distribution of

inherent errors. This is an impossible assumption to check, especially in the
- latter stages of program development. At that point, many of the easy errors
fﬁ (e.g., misspelled output) have been eliminated and the only remaining erccrs are
the very subtle errors which are extremely difficult to uncover.

R Another approach, proposed by Rudner,5 avoids this problem by employing a
s "two-stage" or "two-team" testing procedure. The program is first given to one

team for testing which finds n errors. The program is then turned over to a
£ second testing team which discovers a total of r errors, (k of which were also
i found by the first team.) Using the hypergeometric distribution, the MLE for the
total number of errors in the program, N, can be shown as:

= [‘kl’i] : (2.2)

y [ where again [ ] denotes the greatest integer function.
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In an article by Schick and Wolverton,® reference is made to a pair of papers
RE by Basin?’® in which the following approach is taken. Suppose a program consists
{“ of M statements from which n are randomly selected and errors are introduced. If

,
o
[.'; 2 -1
.' L]
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r statements are then randomly chosen and tested with k; having inherent errors
and ky having seeded errors, then the MLE of N, the total number of errors, is:

o "

Y ~_1"':i

b ¢ M-n+1 .

'}:: N = k]_ L;——_—E——)* , \2.3)
Y

l with [ ] being the greatest integer function.

All of these procedures stem from '"capture/recapture'" estimation techniques
which estimate the total number of animals of a given species. A '"tagged" set of
animals is released into the environment and after allowing the animals sufficient
time to disperse, a second capture is made. Based upon the number of tagged
animals released and recaptured, estimates of the total population size can be
made.

- .
o

RN
v St
SR

R

In applying these estimation procedures, Schick and Wolverton® warn that,
based upon preliminary calculations, the tag ratio (the average number of tagged
errors in the sample) should be greater than 20 to ensure the cstimates are close
to being unbiased. These estimation procedures can be applied at any point in the
life cycle development of a program to estimate the current error content. The
biggest drawbacks are in seeding the errors and in the employment of limited
resources in a two-team approach. Few organizations can afford the luxury of
duplicate testing teams for a given program or even program modules. Generally,
in the life cycle development of a program, if schedules start to slip, the time
is made up at the expense of the V& effort. As a result, when the program
reaches the testing team, all available resources are spent to quickly perform
the testing tasks and release the program to the operational user. These pro-

L SR
. O«
.l

R

a3
PR
R
LI P Y

-l':

v
Y

«

“ cedures :zlso do uot provide time-dependent reliability measures of the software,
R which may or may not be a drawback. This is discussed in Chapter 4, the Time
N Domain Approach.
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CHAPTER 3
DATA DOMAIN APPROACH

The Data Domain Approach includes those procedures that estimate a program's
current reliability based strictly on the number of successful runs observed
compared to the total number of runs made. Included within this category are
procedures that try to employ test inputs for the program that are chosen accord-
ing to probability distributions of anticipated operational usage. The various
inputs to a program are broken up into categories, and probabilities are then
assigned to those categories which represent anticipated uses.

For example, range might be an input. It can be broken up into the cate-
gories [0, 1500 nautical miles (nmi)], [1501 ami, 2500 ami], [2501 nmi, 3500 nmi]
and [3501 nmi or more]. Probabilities are then assigned to each category, based
upon the anticipated operational usage. If it is anticipated that about one-
fourth of all the ranges are 3500 nmi or more, that category is assigned the
probability %. The inputs are randomly selected according to their probability
distributions and the resulflng test cases are run. The estimated reliability
is then simply the total number of successful runs over the total number of test
runs.

The Data DNomain procedures try to divest themselves of time between error
occurrence that the models of the Time Domain Approach may employ. If time is a
factor in some of these models, it represents the total elapsed time (either wall
clock time or CPU time) for a testing session and not the times of error occur-
rence.

If a rardom selection of inputs, which reflect the anticipated operational
use, is made and N runs are made, with S being successful, then the estimate of
the current program reliability is:

~

R = S/N. (3.1)

Using this basic Binomial Experiment Approach, a number of researchers have pro-
posed modifications of this estimator. Hecht® proposed the estimators:

A

Ry = (8/(NxL)) (3.2)

and

Ry = (S/(NxLxW)) (3.3)
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' where 1. is the number of machine instructions submitted and W is the average %ﬁ t‘“
- nurber of bits-per-instruction. The wmodified estimators allow for differernces SRR
N in exposure to failure (by normalizing the estimator by the program length) and E:ﬁ
A2 tor differences in programs operating on different machines with different word O
}Q sizes. Suppose the reliability estimates between two programs are compared. If £1 *f%
T one program is on a large main-frame computer that takes a large amount of time h CS&
i to process and the other program is on a small microprocessor which executes - fHL
p quickly, the results may be misleadirg if the reliability is calculated using ki %“T
o equation (3.1). Gl
o Brown and Lipow!® have suggested a modification of the basic estimator to RN
< allow for the fact that many times in testing, the input is chosen to "stress" the oo
ﬁi software program. The rcsulting estimate of reliability then tends to be on the E“*
- "pessimistic side." Their procedure is tc take the input space and divide it into g
e "homogeneous" regions, Pi’ i=1,...,K. They are homogeneous in the serse of fault gQ e

gl
'
.

generation. Suppose Nj runs are made from the partition region Pj’ and Fj are

PRt
Pl

e o o
TS

. v
2-T1 Tac

F. 3k
é: failures. The estimate of the '"unreliability" of that region is ﬁju If the Eé .
iy '
oo probability in an operational environment of drawing points from Pj is P{Pj}, the O
o ovita ; . . K
7 unreliability for the entire input space can be estimated as the sum over all &l .
e regions of the corresponding unreliability of that region times the probability of L
iy drawing an input point from that region, i.e., OEENOA
. , oL
" Estimate of the unreliability for the program = 3 Ei P{P.}. (3.4) “ FQE
i=1 ¥, °? ~ WO
i fe
. i : . . bl
The estimate of the reliability of the program is then given as 1 minus the un- e
reliability. The main drawbacks of this approach are the construction of parti- gg E:
tion sets which are homogenecus with respect to error generation and assigning R
a probability that an input point be drawn from a given partition region. The &Q
former is impossible to determine while the latter introduces a lot of errors in Y
the estimate based upon subjective judgemeni. 23 S
%
Corcoran, Weingarten, and Zehnal! proposed a model which is more suited to _ t:
hardware reliability applications, but because of its easy extension to software Eﬁ o
reliability medeling and the fact that it is a generalization of the previous b
binomial, it is mentioned here. Suppose there are M sources or types of software ;ﬁ
errors that can cccur. And suppose a, is the probability that if the ith type of e
error is observed, it is corrected, i.e., the conditicvnal probability SN
b
P {error corrected|ith type observed} = a, PR
{0 ;:.:"I
where L
s
i.= 1,...,“. ‘:9 \b'::
o
N sa
[g o
3-2 o
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" If N runs are made and Fi errors of the ith type are observed, then the estimate

!! of the reliability of the program is:

' LS, :

B R=g+ L %@/ (3.5)

" where S is the total number of successful runs and

a; if Fi >0
- y; = (3.6)
Ly 0 if Fi =0 .
- This estimator can be shown to be asymptotically unbiased and its variance goes
}g to zero for large N. One drawback for this model is that the M types of error
2 so?rces have to be known beforehand, and the most serious drawback is knowing the
a,'s.
i

.
ol

These next models discussed try to combine not only, the results of a given
set of runs, as in the previous models, but they also try to take into account the
input space.

The first model is one by Nelson.l2 The basic assumptions are:

Assumptions

{a) A program may be defined as a specification of a computable function F
on a set E

E = (E,:i=1,...,N)

i

which is the set of all data input values needed to execute the program.

(b) Execution of the program for each input Ei produces output F(Ei)'

'

T
.00

(c) Because of imperfections in the program, the program actually specifies
a function F” which differs from the intended function F.

e
P
~asla

(@) For some of the Ei’ the actual output F'(Ei) is within an acceptahie
tolerance of the intended output F(Ei); i.e.,

&
A
r

o [Fr@) - Fap| < sy (3.7)

f; But for some Ej’ the actual output F'(Ej) is not within acceptable limits; <
0 i.e., ¥

|F‘(Ej) - F(Ej)l > 8, (3.8)

and an error is said to occur., N may be very large, but it is finite,” owing to
the fact that only a finite number of different values can fit into the word size

T a " RS P L FiT sl eTa B e A et e ehmmm—— e — o
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i)
z of the computer. Now suppose that Ee is the set of all inputs producing errors on
3 a given run; i.e.,
¥
: E ={E.: [F'(E,) - F(E))| > A, 3.9
3 e {J (J) (J) J} (3.9)
3& Suppose there are n, elements in this set. Then the probability of the program
'i executing correctly if an input is randomly selected from E is:
SE R=1- ¥ o (3.10)
?% However, the usual situation is that the points Ei are not chosen randomly. They
5’ are chosen according to some operational requirement which can be represented as
N a probability distribution over E. For this distribution,
ke
;ij p; = P{Ei is selected}.
o Hence the reliability of the program can be expressed in terms of these probabili-
% ties as:
.':-_‘4
N
o R= 3 p;(1-y,) (3.11)
i i=1
n
where
0 if E,{E .
y; = e (3.12)
1 if EiaEe

If n runs'éré made and the inputs are chosen according to the probability distri-
bution over E, then the probability of all runs being successful is:

n TN N
R =R =[): p (1~ v . (3.13)

.=1 A

Nelsonl? expands his model by allowing for the fact that usually runs are not
made independently of each other, i.e., one of the input variables may be chosen
in ascending order from run-to-rur. To allow for this, Nelson redefines the prob-

a2

> v v
i

J
i
'Hi ability distribution over the input space as: Fa sgg
B AT ST
= 3 Lt
5 , . st e
Pij = P {Ei is selected on the jth run of the sequence}. (3.14) '
Kl
-y e ","/-
Hence, for the jth run, the probability of a failure is: E% gkﬁ
i o
L‘A;.?.
N 'p(‘.‘-(
: : : - |-.‘:'\-"
p. = 2: P:.Y., with y. as previously defined. (3.15) 3 el
A — ij7i i d qu
i=1 b F
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The probability that there are no failures in n runs becomes:

(1-p1) (1 -p2)...(a -~ p). (3.16)

As in the previous binomial type models, the estimated reliability based on
Nelson's first model is simply:
R=1-%

-

a ! (3.17)

where f is the total number of failures and the input points are chosen according
to the probability distribution over E. To construct this probability distribu-
tion, Nelson suggests that the ranges of the various input variables be broken up
into subranges. Probabilities are then assigned to these subranges based upon
anticipated operational usage.

In the TRW report by Thayer,!® the model by Nelson is again medified by tak-
ing the input space E and partitioning it into disjoint regions, Ri i=1l,...,k,
i.e.,

3
i
(:z'

4 R, and Rif\Rj = ¢.

H.
if

The probability that a point is randomly selected from Rj can be calculated as:

2 Py 3 (3.18)
E.€R,

J
i.e., all the operational probabilities of the input points falling into region
Rj are summed over. If the region Rj is further divided into two sets R.' and R."

N

where

R! = {E,eR, NE }

J 1] e
and

| L S

Ry = {EieRJ./\Ee}, (3.20)
the set R& is derived consisting of all input points in Rj’ which result in suc-

cessful execution of the program. Rg consists of all input points of Rj yielding
failures.

The probability of a point falling in Ré is therefore:
P,, = Z (1-yJp, ,
R E.eR, 1ol
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i with y; = 0 ii EieRé, and 1 otherwise. The probability of a point falling in R:].'
% is similarly computed as:
; Ppu = 2y, Py - (3.22)
! h| E.eR
‘.\
I The overall reliability of the program can then be expressed in terms of these
P probabilities as: .
] N
) R=1-~- Z YiP; , (3.23)
I i=1
1 \
; K :
.: - 1 - E ylpi N (3¢24) N
. j=1 E_.eR, E o
" 1] h :
‘ e
] R
< K t\_{ a
: =1- 2 B (3.25) v
3 =t o
‘ and
> .20
o = P . 3.26
A R'
' j:l J
The input space has been stratified into regions in exactly the same manner as
described by Brown and Lipow.!® Brown and Lipow created their strata based upon - F
7 B
creating regions which were homogeneous with respect to error generation, while U
Py
i Nelsonl? suggested a partitioning based upon logic paths. E-:
- el e
! Using results from basic sampling theory for a stratified population, if nJ. B ;:;.‘.;_:.
f:? runs are made in region Rj’ and fj are failures, then the estimate of R is again ::
-e n B
X simply: ‘ i I\«
5 & =
IJ N K f, K.""
» R > e, (3.27) SR
o &= n. R, 5 F_\\
> =1 73 ] L l-':":-.
w2
_‘ provided the input points in Rj are chosen according to the probability distribu- a0 t:'?‘;
ﬁ tion over the input space E. The variance of this estimator can be shown to be i K
1" ‘.:u‘:‘
% oy
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~ x Fgt Bpo
Var {R} = Z —-'l-n—l . (3.28)
j=1 h|

This variance can be minimized by taking

R! “R!
n, ¥n . (3.29)
}I_% Pr: Pro
= A

As in the previous Nelson models, the biggest drawback is the establishment of the
distribution over the input space to determine PR‘ and PR"
J 3
A paper by Sugiura, Yamamoto, and Shiinol¢ also considers the binomial model,
but views the input space as being composed of two parts. The input space is
broken up into a user space, the space where the input is actually drawn from, and
its complement (Figure 3-1).

E NE'PE

FIGURE 3-1. THE INPUT SPACE E = E (USER SPACE)u/E

The area Eu is never tested in the V&V stage. For the entire input space E, sup-
pose there are a total of NE input points, of which a proportion PE of them re-
sult in errors. The real reliability of the program is therefore:

RE =1 - PE . (3.30)

However test inputs are obtained and sampled from the user space Eu’ where there

are a total of Nu points, of which a proportion Pu result in errors.

A '\h‘-‘_l -.~4 'yn\ul,l -,.n n
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i Now suppose a set of n runs are made and f result in failures. Pu can be .
: estimated, as seen before, as EE
) >
i ~ f
3 P, ~ < for n large. (3.31) g§
i .
4 Now suppose that m bugs are eliminated by debugging. Then the following expres-
i sion is derived
* ‘ b
; j-m 3 w o at
P =P - =4 (3.32)
u u g
u
£

. B

where Pi is the failure ’probability before debugging and P& is the failure

o2

i

PP . DhiPRgrl S

probability after debugging. The points Pa and Pi-m are estimated using equation FQ
. (3.31) on two separate teisting occasions. Equation (3.32) can be plotted as a sl
& function of m by holding ?i fixed. Calculating the slope of this line, Nu can be -
ﬁ estimated as ; o

o A
y - : )
N == —— . (3.33) L

Slope

Least squares can also be used to fit equation (3.32) to data. The software be-
comes perfect when

RE L
& 1)

PN

l' &

N Jm _ i oom__ o -

) Pu Pu N 03 (3 ‘ 34) {"»)

: u A

N 1)

~|

& i.e., when F}

X m= RN (3.35)

N !

3 which simply is when the number of errors removed is the same as the total number A

4 . . . . . . ) . ‘e
e of input points leading to failures. This assumes no new errors are introduced in Lj gX
P the debugging process. If there are bugs which have complex causes, additional 5
%‘ software errors might be introduced when correcting those errors. Suppose that :

}; such bugs exist in equal probabilities in the input space. Then the probability §3 i)
&. of such bugs residing in the user space is Nu/NE‘ If such bugs in their correc- §Q¥
% tion produce B new errors, the failure probability, after the elimination of m 3 ﬁ5¥
A errors, is: | &QQ
I:‘ N ‘
, Jmo_pd om_ U Bk
-‘.:\ I'u Pu N (1 N B) . (3 . 36) ,..J’ ;1\‘:.]\'
RN u E R o
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The program is error free when

jm _ 5§ _m_ -
Pu = Pu N (1 -D)
u
i.e., i
J
n = PuNu
1=-D
where
NuB
D = -ﬁ_. (3.39)
E

If the program is at a particular point in the testing stage where the failure
probability is Pi
then
PIN,
"=T-D

(3.40)

is called the "remaining bug index." The unknowns in equation (3.36) can be esti-
mated, using the results of several testing sessions and equation (3.31).

This is a very simplistic model that has not been employed on any data sets.
Their formulation also rests heavily on obtaining good estimates of the Pﬂ's

using equation (3.31) in order to fit the straight line as a function of m. This
means that the number of runs for a given testing session should be quite large.

The next reference in the Data Domain section is to a paper by Elliot, et.
al.15 The techniques in their paper again employ the simplistic assumption of a
binomial experiment. For this reason, they assume that the runs are independent
and the true reliability is the percentage of points in the input space which
result in the program running correctly, i.e.,

R=F (3.41)
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where S is the total number of points in the input spsce E, which result in suc- I‘,—‘ F
cessful execution of the program. N is the total number of points in that space. 11 ,j;;,:
They propose two testing procedures to determine whether a program has reach- }L':'

ed a given reliability. One is based on a fixed sample size, the other is a se- @ R
quential testiag procedure. The fixed sample size is the usual hypothesis testing w .‘;’:{
procedure for a binomial probability. The user specifies a size for the Type I
error (the probability of rejecting the program when it has a desired reliability Q A
level) and a Type II error (the probability of accepting a program when the reli- & {
ability is no more than a specified level). Using these values, tables are given R
which provide the number of tests, n, to run and the maximum number of failures, £ }:;:
f, that are allowed if the program is to be accepted. The program tester randomly H %-jfﬁ,
selects a subset of n input points from the input space E and runs the program. e
.If more than f program failures are observed, the hypothesis that the program lhas s
reached the desired reliability level is rejected; otherwise, it is accepted. -

For the sequential procedure, the tester specifies: a minimum acceptable

reliability Rmin’ a probability & that the program with this reliability will

pass testing, a probability R for which one wants to be "almost sure" that the

software will pass, and a probability B that the software with this probability
will fazil the test. The sequential procedure is to:

(a) Accept the software if

Fﬁ'hz’%BNT H

(b) Reject the software if

(c) Otherwise, continue testing E

! Ed.':-.i

where F is the total number of failures experienced up through NT tests (NT=1, !':}:‘:}-}
2,...) IS I
B b

hy = {2n(1-a) - 2nB]/D , (3.42) Bt

hy = [20(1-B) - %na}/D , . (3.43) F_‘j o

B = [Qanax - ﬁanin]/D , (3.44) _“:

and Lo O
D=2fnR - Lo0R .- n(1 - Rmax) + fn(l - Rmin) (3.45) . {..,:..

As an example, suppose a program is tested in which if the true reliability is 4 :1'_
something less than R . = .7 it is desirable to limit the risk of releasing it N
N

by setting a = .05. On the other hand, if the program has a reliability of .95 [ Q::..
or larger, the chance of rejecting it should be B = .1. "j ?.'"‘"'
. T

s r:..‘.'.
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- Then

;:5 & hy = [£n.95 - Rn‘lj/D , (3.46)

g E? hy = [n.9 - £a.05]/D (3.47)

3~ B = [£0.95 - #0.7]/D (3.48)

g Eﬁ and D = 2n.95 - &n.7 - &n(1-.95) + 2n(1-.7). (3.49)

%3 Eﬁ Performing the calculations, it is found that:

| ‘j D =2.097 , (3.50)
E hy = 1.074 (3.51)
. he = 1.378 (3.52)
Li and

Y B=.146 . (3.53)

Ty

« m.
R

So the sequential procedure is:

AP A el

o

(a) Accept the software if:

F < -1.378 + 146N

L ]
L)
LA N

(b) Reject the software if:

F > 1.074 + 146Ny

w
(c) Otherwise, continue testing.
[CA
,ﬁ The advantage of the sequential procedure over the fixed sample size is that on
* the average, a sequential procedure requires less testing than a fixed sample size
e to achieve the same levels for the Type I and Type II errors.
b 'b '
b The last model considered in this section is LaPadula's Reliability Growth Rfi:
Modell® (see also References 17 and 18). The approach is to fit, using least Ef&?
Eﬁ squares, a reliability curve through the success/failure counts observed at }5}3
) various stages of the software testing. More specifically, the assumptions are: o
Model Assumptions .;:;

| rare
RLRE S

(a) Testing is conducted in a series of N stages. A stage is marked by any &:“f
change or modification to the program. L

(b) At each stage, a., i=1,...,N tests are performed of which S, are siccess-
1 1

ful. The number of tests performed at a given stage is not fixed in advance.
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ﬁ (c) After the completion of the N-th stage (which itself is not set in ad- r
- vance), a growth curve of the form J
3
Eﬁ R(k) = R(u) ~ A/k (3.54) Eg
Eﬁ is fitted to the data. R(k) is the reliability of the program during the kth "
-] stage of testing. R(u) is the value of the R(k) as k»® and A is a growth pa- -
o rameter. If A > 0, the reliability of the program increases while A < 0, the Ea
& reliability decreases. B
i To estimate the two unknowns R(u) and A, least squares estimates can be U
used. The desire is to minimize <
§= 3 |R(K). - = (3.55) 1
k=1 k -
N Sy \? B
=3 (R -a/k-=). (3.56)
k=1 k .
g
The estimates which minimize this expression are found to be: éﬁ
Estimates - Least Squares E§
A k=1 Tk =1 %/ \is1 K H
A=N 3 (3.57) 8
N N
1 1
>4 -a(g !
k=1 k) k=1 k2 H t-.z;:.
and ri )i:
A ~ N N 8§ RSN
1 hl l k 1y :_,.-
Rw) = 514 3 ¢+ + X — . (3.58) €
N [ =1 k =1 i

The only data then required to estimate the reliability curve are:

Data Requirement

The number of tests, n,, performed at each stage and the number of successes
observed at that stage, 8 -

The relationship of the reliability of the software to the stage number of
the testing sequence is hard to justify. Moreover, a stage can have an arbitrary
number of tests composing it. The only thing that marks the end of one stage and
the beginning of another is some change to the program.
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CHAPTER 4
TIME DOMAIN APPROACH

The Time Domain Approach to software reliability modeling has received the
greatest emphasis in the applicable literature as it does in this report. This
approach attempts to utilize either the times of error occurrences and the result-
ing times between error occurrences or the number of error occurrences per time
period to model the error generation processes. In general, the models can be
used to predict the expected time until the next error occurrence or the expected
number of errors in the next interval of testing. These models were originally
motivated by hardware reliability concepts and many of the terms used in hardware
reliability modeling are carried over into the software. '

N % G
PP S SR

A TP

Ty
e

& Over the last 10 years, many models were proposed and. extensions to them were
A given. There is still quite a lot of controversy about which is the "best' model
b to use on a software data set. Some studies were done comparing the various
S models on simulated and real data sets (see Chapter 5) and some studies are
A currently under way, but more research is needed. The best advise for apvlying
S these models to a software error data set is to apply a number of them tu¢ see
- ii which appears to best model the data; that is one purpose of this report. By

providing a general overview of the various models, their assumptions, and data
N requirements; a number of models, which seem to be close to the actual way the
fﬁ data was generated, can be chosen. By applying some of these candidate models,
2 the best model for a set of data can be established.

Section 4.1 discusses some of the hardware reliability concepts and terms
Fq that were adapted to software modeling. The difference in hardware versus soft-
i ware modeling is pointed out. Section 4.2 begins the discussion of software
modeling with some of the classical adaptations of hardware concepts to software

&ﬁ models. They are classical in the sense. that many of these models are based on
) an exponential distribution for the time between error occurrence and the rate of

error occurrence. The latter is determined by the number of errors in the pro-
o gram at the time of the test. Section 4.3 discusses the '"Bayesian" philosophy
t; applied to software modeling. This is followed by Section 4.4, which deals with

attempting to model the behavior of the program as a Markov process.

&{ The models chosen in this report were selected to provide the reader with an
) idea of the numerous approaches that have been proposed for software modeling.
An extensive reference/bibliography is provided at the end of this report which

ﬁ: may be of benefit to researchers in this area. An excellent report, giving an
by ovecrview of software modeling in general and containing an extensive reference
list, is a report written by Gephart, et. al. This report is highly recommended
%5 for a researcher in this field.
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4.1 HARDWARE VERSUS SOFTWARE RELIABILITY MODELING

In hardware reliability modeling,!® a number of key concepts have been
adapted for software modeling. The hazard rate Z(t) for a component (software
program) is defined os the conditional probability that a failure (error) happens
in an interval (t,t+At) given that the component (program) has not failed up to
time t. If T is the time when a failure (error) occurs, then:

2(t)At = P{t<T<t + At | T>t} . (4.1)

The unconditional probability provides the failure (error) probability density
function, f£(t), for the component (software program); i.e.,

f(t)At = P{t < T <‘t + At} . (4.2)

The hazard function can be related to the pdf of the time of failure (error),
f(t), as:

Z(t) = 1—-§-(—§T%?j- (4.3)

where F(t) is the cumulative distribution of the time to failure; i.e.,

. ,
F(t) = [ £(x)dx. (4.4)
0
The function
R(t) =1 - F(t) (4.5)

is called the reliability function of the component (program).

From equation (4.4), it can be seen that:
dF (x)

Z(x)dx = I_TF—(;T (4.6)
or
t
S 2(x)dx = -log [1 - F(x)]l
(o]
4.7)
ft Z(x)dx = log L= E(t)
3 g 1 - F(-CTS H
or
1 - F(t) =R(t) =exp { - _/§ Z(x)dx} . (4.8)
[o]
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5 . Thus once a hazard rate function for a component (program) is specified, the reli-

i iﬁ ability. function R(t) is then determined. Once the reliability function has been .
H . established, the expected time between failures (errors) or Mean Time Before Fail-
S ure (MTBF) is calculated as: o
!B v 2
SRS MTBF = [ R(x)dx = [ tf(t)dt. (4.9) %
‘ N 0

n - ' Many of the models in the next paragraph present forms for the hazard rate which,

& using the previous relationships, determine the relizbility function for the pro-

5o gram and the MTBF. Some of the models in Section 4.2 contain terms that do not

s e
ey

{
Lo have counterparts in hardware, e.g., the number of errors remaining and the time
required to discover the remaining errors.

L

hﬂ The concepts of hardware reliability modeling were adapted to software model-
- ing. This is not to imply that the behavior of software is similar to hardware;
) quite the opposite is true. Software does not waar out over its life cycle as
b hardware does. In the reproduction of software, there is no generation of new
o random software errcrs introduced in subsequent copies. Duplicate software

programs vyield identical results. Moreover, software does not change during
" repeated operational use as hardware does. It is, in fact, that inconstant
d property of hardware upon which the probabilistic modeling of hardware failure
occurrence is based. For software, it is the unchangeability over time that makes
" software error generation independent of time. The elapsing of a time variable
2 does not cause software errors. For this reason, a number of researchers have

strongly questioned the modeling of error occurrence in which time plays a fac-

tor. (See References 20 and 21.) It is not a direct relationship between a time

M variable and error generation that is modeled, however, but an indirect relation-

W ship as a result of the randomization of the input space for a program in opera-
tional use.

Fa Within a program are latent errors which are discovered when a certain com-

bination of input variables cause execution of the program to go down the path in
. which the error lies. Because of the very large number of combinations of input
X variables that are possible, the operational usage of a program gives the appear-
e ance of randomization over the input space. This, in turn, causes the error
occurrences to take on the appearance of following a probabilistic model over

" time. It is characterization of this probabilistic nature on which the modeliug
[ is based.

.

b 4.2 CLASSICAL SOFTWARE MODELS

e 4.2.1 Weibull Model

e

Since a number of the concepts of hardware reliability theory were initially
b adapted to software, one of the earliest models to be applied was the Weibull
?} Model. Because of the nature of the Weibull distribution, it can bé used to

¢ »
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model increasing, decreasing, or constant failure rates for software. The form of :j "
v the hazard rate is taken as: ’ R A
hid S
[yl Netvg
o 2( _a ft\a-1 N S 4 RSN
oy t) = 5 \B where a,b are constants > 0 and t > 0 (4.10) t@ F::'
it . o’: 'l
A . R
e so that if a > 1, the error rate increases with time; if a < 1, it decreases with e
time; and if a = 1, there is a constant failure rate over time. The corresponding o
) pdf for the time to failure is the Weibull distribution; i.e., K ?gﬁ;
- a " IO
£(t) = 2 (£ ) exp | - (f t>0 | (4.11) g i
b \b b Z DS "i

with the cumulative distribution function

r a
- =1 - - (t :
F(t) = [ £G0dx =1+ exp |- (5) : (4.12) &
) a
: w
(Notice that if a = 1, i.e., a constant failure rate, f(t) becomes the exponential -
distribution.) 5
‘The reliability function is therefore:
]

a .
R(t) = 1 - F(t) = exp -(%) , (4.13)
and hence, the MTBF is:

e
LIEALS

i
Py
snak,

d;y i=1,...,K,

arm—-

[+ Q0
- - _bo(1

MTBF = 6/‘ R(t)dt -O_/' tf(t)dt = - r(a) (4.14) m

where T (+) is the gamma function. 3

o

Coutinho?2 (also see Reference 18) proposes estimating the unknowns using as "

input the following data requirements. o

Data Requirements =
(a) The total number of errors in each time interval of testing £3 s
H L s
t."—‘ . .

¥ n,, i=1,...,K, . o

ﬁ (b) The length of the testing interval ‘&ﬁ N

2,
o

(¢) The total number of time intervals, K, and
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3! (d) The cumulative number of errors found to date

K
M==2: n. .
i=1 *t

The estimators are obtained using graphical procedures, method of moments, least
: sguares, or MLEs. For instance, in the case of least squares, let

2 m= a, 1 (4.15)

‘- b, = -afa(b), (4.16)
3 i
3 ‘2:‘3'
F(i) = lflﬁ- (normalized cumulative number of errors found up
3 through the ith time interval), (4.17)

: i

X, = };_‘, ds ) (4.18)
i' From the expression of the cumulative distribution function

W £\2

N F(t) =1 ~-expyg - (F) >y (4.19)

we have 3
& 1 _ t\?
] m - exp + E’ ) (4020)

.\l‘ 590
1 a
and thus,
rid
o &nt fn [T:}WQ] = a.Qn(t) - aﬂn(b); (4022)

- that is,
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with

y=42n]| &n T—:lFTEj and x = 2n(t). (4.24)

The standard equation for a straight line, is thus obtained. If

- 1

there are n pairs of data points (X1,Y1),...,(Xn,Yn) which (applying standard
least squares) provide estimates of the slope and intercept; i.e.,

K\
. 12;1 (¥,- DG, - ¥)
" X b | 4.26)
3 X, - 7)2 (4.
i=1
and
b, = Y-mX , (4.27)
with
K
g o181l
K
and (4.2R)
K
.21 X,
o _ 1i=1 71
X = R .
The estimates of a and b are then derived as:
Estimates
a= (4.29)
and
N bo
b=exp y~— . (4.30)
m
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The estimates of the reliability function and MTBF are qiven as:

. N
R(t) = exp{-(,.) } (4.31)
b .
and R
cp _ b 1
MTBF = H r (3) . (4.32)

‘Wagoner?3 (also see Reference 18) also applies the previous procedure to a set of
software data, but suggests that the di”s should be measured in CPU time rather

than wall clock time. This a grod suggestion and should be considered for all of
the models. CPU time reflects the variation in testing effort from period to
period. It also takes into account when no testing is going on. This is dis-
cussed again in relationship to Musa's Model.

4.2.2 Shooman Model

One of the earliest proposed software models was derived by Martin Shooman
(References 24 through 29). The basic assumptions are:

Model Assumptions

(2) The number of errors in the code is a fixed number.

(b) No new errors are introduced into the code through tlie correction pro-
cess.,

(c) The number of machine instructions is essentially constant (i.e., the
program is relatively mature).

(d) The detections of errors are independent.

(e) The software is operated in a similar manner as the anticipated opera-
tional usage.

(f) The error detection rate is proport. mnal to the number of errors remain-
ing in the code.

Suppose T is the quantity of debugging time (in months) spent on the system since
the start of the testing phase and suppose t is the operating time (measured in
CPU) of the system. Using assumption (f) at any time t, the hazard rate is

Z(t) = Ksr(t) , (4.33)
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where K is the proportionaiity constant and er(t) is the error rate. This is

taken as the number of errors remaining in the program, afier T momnths of debug-
ging, normalized with respect to the total number of instructions in the code.
This error rate, sr(t), is mathematically expressed as:

ET ' )
e (t) ==—~-¢ (1) , (4.34)
r IT c
where ET is the total number of errors initially in the program; IT is the number
of machine instructions; and ec(r) is the cumulative number of errors fixed in the
interval from 0 to T, normalized by the number of machine instructions. Since ET
and IT are constant [assumptions (a) and (c)] and since no new errors are intro-

duced in the correction process [assumption (b)] as:

Ep
T+ g (t)>+— , (4.35)
c . IT
so ' : '
ar(t) > 0. . (4.36)
Combining equations (4.33) and (4.34),
ET . ‘ .
2(t) =K { 7 - e (W} . (4.37)
T € . »

Thus, the reliability function is:

E
R(t) = expl- K I—T e (D] ¢ (4.38)

T

and the MTBF is:
MTBF = 1 (4.39)
) ET
K|l=— -¢ (1) .
IT c

The only unknowns in this model are ET and K. These quantities can be estimated
in one of two ways.

The simplistic procedure is to use the moment technique. The required data
inputs for this estimation procedure are given in the following.
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Data Requirements - Moment Technique

s! Run a functional test of the program after two different debugging times,
T1 < T2, which are chosen so that ¢ (t1) <& (tz\ and record the following infor-

A matioan:
i
i R R
i (a) For each testing period, record the number of test runs that were made,
i.e., ry and rp (usually ry = rjp).
!
Lo (b) For each testing period and for each rur, record the amount of CPU time
that the program successfully executed. If out of the r, runs made, W, were suc-
g Eﬂ cessful with execution times Til""’Tim , and r;, - m, vere unsuccessful, but had
H A
. successful execution times of tigoeeoaty . . Defore the errors were discovered,
. i i
Ej then
A
: r,~m,
Y m. i1
H, = T, > t. (4.40)
=1 Y =1 M

rak]
i2aa”

G ———

.

is the total amount of successful execution time in the ith functional testing
period,

g 2

The constant failure rate for the ith functional testing period is then estimated
as:

>

et
Vo
o3
{l

number of failures per hour (4.41)

[

i i (4.42)

.l.
|
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e

Since the MTBF for a constant failure rate is the reciprocal of the failure rate,
the MIBF for the ith functional testing period can be estimated as:

r: .
{g', MTBF .= 1 . (4‘43)
1 r, = m,

1 1

MW TR T ST

. If this expression is equated with the expression for MIBF, based on the mecdel, it
! fi can be seen that:

Hl A 1

e ——— = MTBF = , (4.44)
X ri= m 1 ET

’ K I (1)

pe T
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3
3 1
A and

3 M2 - yrer, = 1 . (4.45) g
? 2= m2 ET

;j K -I; - €, (2) L-ﬁ‘
‘: There are two equations in two unknowns, so solving for K and ET, the estimates )
o are obtained.

3 .
?l Estimates (Mcment Estimators) 2
! : [Z2/2) e (v - e (o) ~.
Bp= I 7 s (4.46) R
\' T T (22/Z) -1 ' I
:1| ("
W\

Y| (i
" and Q
)

4 . 21 ;
i K= =~—m—m—m—— (4.47)
X Ey |

-i' I - £.(t1) @
vhere ’
n r, = m ' H
N = v
',:~' Zi Hi . (4548)

i

,.: The problem with this estimation procedure is the variation in the estimates 8
- as a function of the two debugging times, Ty and T3, chosen. Gephart et. al.18

:::' found that the estimates of E, and K varied quite a bit depending on the two 3
f;',*' chosen points. They suggested that a number of pairs be chosen and the averages o
! of the resulting estimates, using the previous equations, be used. Using the

W median of these derived estimators as a possible estimate could also be con- F‘
t..! . ’J
! sidered. (el
S

’.::1 A second estimation procedure is based on the maximum likelihood proce-
"o dure.281380 The data requirements are the same as required for the moments estima- R
W tion procedure.

uY ‘
R Data Requiremenls - Maximum Likelihood Estimation Gk
n U
S (Same as moments techniques.)
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The MLEs are:

g! Estimates (Maximum Likelihood Estimators)
b A E22/21) e.(t1) - Sc(tzﬂ
I Ep® Ip 5 VDR = (4.49)
@ and °C
.J “ 1 rl r2 ‘
K = [ = x + = (4.50)
” Hy +‘H2] -
2 Bp - g () Ep - f(t2)
™ Ip °© Iy
<

-~

,.-w
e €

.
e |

Notice that ET is the same as the moments estimators. Here again, it is suggested

that a number of pairs of points be chosen and the average or median of the re-
sulting estimates of ET and K be used.

ars

4.2.3 Jelinski and Moranda "De~Eutrophication" Model

,_ﬂ
T

Another early model was one proposed by Jelinski and Morunda3! while working
for the McDonnell Douglas Astronautics Company. They developed this model for
use on the Navy NTDS software and for a number of modules of the Apollo program.
As can be seen in this paragraph, their work spawned quite a few variations of
their basic model.

[ 2

R ~ | w¥es

¢
L LA

Model Assumptions

L2

. (a) The rate of error detection is proportional to the current error content
of a program.

3

s

ey

(b) All errors are equally likely to occur and are independent of each

i

! ﬁ? other.

:b l‘L':

; - (c) Each error isc of the same order of severity as any other error.

YR

TN _ . ,

, ml (d) The error rate remains constant over the interval between error occur-
q rences.

oL

{ h] (e) The software is operated in a similar manner as the anticipated opera-
N tional usage.

f : (f) The errors are corrected instantaneously without introduction of new
ﬂ ' errors into the program.
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These assumptions are basically the same ones stated for Shooman's Model. i
(In fact, this report shows that the two models are equivalent when the correct -
correspondences are made.) The biggest questions are with regards to assumptions

PR :

ﬁg (¢) and (f). It is difficult to envision a situation in which a perfect error o
o correction process is achieved. The instantaneously corrected error part of the il
o assumption can be avoided by not counting erroys which were previously detected,

but were not corrected. Assumption (c) can be avoided by dividing the errors
into classes based upon severity. For instance, one might have a category for
critical errors, a category for less serious errors, and one for minor errors
(e.g., a misspelled word on an output). Software reliability models are then

e
[t -

ﬁﬁ developed for each type. This approach is suggested. iﬁ
A -
!! Using assumptions (a), (b), (d), and (f), the hazard rate is defined as:
¥ 2(6) = ¢ (N - (i - 1) (4.51) o
o ' )
ot where t is any time point betwesn the discovery of the (i - 1)th error and the ith -
ot error. The quantity ¢ is the proportionality coustant given in assumption (a). 3!
ié N is the tctal number of errors initially in the system. Hence, if i - 1 errors
e have been discovered by time t, there are N - (i - 1) remaining errors so the
o hazard rate is proportional to this vemaining number. Figure 4-1 is a plot of the ?
hazard rate versus time. As can be seen, the rate is reduced by the same amount o)
¢ at the time of each zrror detection.
‘y
If Xi =t - ti-l’ i.e., the time between the discovery of the ith and the tj
(i - 1)st error for i = 1,...,n vhere to = O, using assumption (d), the Xi's are '
assumed to have an exponential distribution with rate|Z(ti). That is: Rg
™
E(X;) = ¢ [N~ (i = D] exp {~¢IN - (i = DIX;] (4.52)
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so the joint density for all the Xi's, using assumption (b), is:

n
L(X1,...,Xn) = ,nl f(Xi) n1 §[N-(i-1)] exp {~¢[N - (i - 1)]x } . (4.53)
1= i=

Taking the partial derivatives of £nL with respect to N and ¢ and setting the re-
sulting equations equal to zero, the solutions for the following set of equations
are obtained as MLEs for N and ¢.

Estimates - Maximum Likelihood

1
A

Oy = 2 and (4.54)
ML ~ n n
N(}_‘, X ]- 2 G- DX
i=1 i=1
L 1 n
.z: o . = = 1 o . (4.55)
i=1 NML - (1 - 1) NML" —"_p‘ <E (i - 1)X.>
2, X, \i=1 !
i=1

Equation (4.55) is solved for N using numerical techniques (e.g., Newton-Raphson)
and is then substituted inte equation (4-54) to obtain an estimate of ¢. The
estimate of the MIBF is therefore derived after the jth error occurrence as:

MIBF {for the (j+1)st error} = —_ = nl . (4.56)

A report by Tal32 derives the least squares estimators for N and ¢ as the
estimators which minimize the sum of the squared differences between the observed
time between failures and their mean values, i.e., the MTBFs. The quantity to be
minimized is:

I & ) 2
i2=1 (X, - MTBF,)Z = 12;1 X, '<¢[N - 1)]) _ 6.57)

Again taking the partial derivatives of this expression with respect to ¢ and N
and setting the resulting equations equal to zero, the least squares estimates
are found tu be the solutions to the following pair of equations:
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4\ Estimates - Least Squares
o 5
n v
1 :
3 " 12—:1 [N - i+ 1]2
_\‘\ ¢LS = " (4.58) l‘?
% 55 i R
i = N-i+d ,
!! and ' , 4
3 5
‘i’; n Xi : n 1 _ "
o z; N - 4 2 2; N - 2] lﬁ
i F1oog-ieny \Fogg-iv A
(4.59) F’-‘;‘»
n X, n t“-";p
S DS B :
gy - 3 g - 3 3
i=1 (NLS i+ 1) i=1 (NLS i+ 1) "
with the resulting estimate of the MIBF again being:
MTBF {of the (j + 1) error occurrence} = 1 S . (4.60) ﬁ
. B
Z(t ) ¢LS[NLS- J]

Tal's32 report also provides estimates for ¢, N, and MIBF based upon a Least

;ﬁ Squares Approach using the times of error occurrences, ti's, rather thar the time )
Efﬁ between error occurrences, Xi's. It states that the t's are integrals of the X's, F1
| “:;s i ol
ﬁ*J t, = 2: IXj, and hence the estimates tend to behave better as the ti's fluctuate

I=1 L
N less due to the cumulative summary effect. X

The estimates for ¢ and N are derived by minimizing the sum of squared devi- i
ations of: (

: 2
n i
. 2 - - 1 .6
Eg% (t; - expected) E;i t; ;E% TCEEEEY) . (4.61) E§
Taking partials and setting the resulting equations equal to zero, the estimates, kj

based upon the times of error occurrences, are found to be the solutions of the
following equations:

n 2 .
A,
Z 1
& (4.62)

b= T
2: tiAi
i=1
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3
~ with
X S
- A= Y . (4.63)
j=1 Nt ~j+t1
'~
@3 and
‘ n noo, n n
Y t.B, A2l = t.A, A.B, 4.64
! iz=:111 5.}=:11 {5';‘111 :‘.glll (4.64)
}i} with
o
Zi: 1
),-‘3 Bt = ”~ . (4065)
b S 5 S C M I L
ﬁﬁ Again the estimated MTBF, after observing j failures, is:
B MTBF {(j + 1) error occurrence} = wf—rl————— . (4.66)
(X%
bl Using the various estimates of MIBF, the estimated time to remove the next m
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errors, after observing n failures, can be derived. lUsing any of the previous

estimates for ¢ and N, the estimate is obtained as:

Estimated Time to Remove the Next m Errors

n+m N
= 2: MTBF {j error occurrence} (4.67)
j=n+1
n+m 1
= . (4.68)

j=ntl ¢(N - § + 1)

The only data required for the calculation of the estimates are:

Data Requirements

(a) Either the time between error occurrence (xi's) or
(b) The time of error occurrence (ti's).

Once one is recorded, the other (xi =t, -t

i 1) ig obtained.
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A number of authors have derived the large sample approximations to the var-
iances of these estimates (see References 32 and 33, also 17%) using the asympto-
tic properties of the MLEs. It can be shown for large n and N that:

n
- 1
var 4 o U = 12=:1 (N - i+ 1) ' (4.69)
ML( ~ D
var § = o (4.70)
ML 62D
a 4
N A - Z xi (4.71)
cov NML’ ¢ML = i=1
D
where
& __ .
p= iZl (N-i+ 12 -5 x
= 7 -
and
var {MTBFML after the nth error occurrence} =
1] < 1 2K
LR - n " i (4.73)
i=1 (N - i + 1)2 (N - n)? (N - n)?
where
n
c = Z 1 - n - 2Ed {-n¢2(N _ n)2 +
i=1 (N - i + 1)2 (N - n)2 (N - n)?
)
+ 203N - 2 3 x| + 2EQS(N - n)Z} - E2¢4 (4.74)
i=1
and ‘
n
E= 2 (n-i+Dx, . (4.75)
i=1

* There is an error for the variance of N in this paper.
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Using these various estimates and variances, approximate (1 - a) X 100 per-
cent confidence intervals can be constructed for the corresponding population
parameters as:

¢ = 3

Lo bl
Ta¥a

‘,ﬁ F’;} Confidence Intervals
N
’:’\': ’ A A ~ J_ A
o oM~ Zl-(_x_ Jvar{(bm‘}, Oyp, ¥ zl-g_ var {1} (4.76)
AN 2 2

siaig -

o
sl e

LI

".“ i
i

N

"
Ll )

NML - Zl- dvar{NML}, NML *Z,. Jvar {NML} (4.77)

a
2

MTBFM -Jvar{MTBF L} MTBF var{MTBFML} . (4.78)

Any unknowns in the expressions for the variances are replaced by their MLEs and

R

NIQ

Z, o is the point taken from a standard normal table such that P{2>2._ 1} = %.
Lar%e sample confidence intervals can be constructed using the least square% esti-
i mates.  Schafer, et.al. (see -Reference 33) use the result that if Xq,...,
jb; Xn are independent random variables with finite moments:
L:d\' k"!
o s E{X.} = g; (81,05), var{X;} = 0,2(61,82); (4.79)
s
i B{(X;-g; (91,62))%} = p, (01,65) , (4.80) [
\7: ‘ql o .! l'. .‘1
N B
A which satisfies Liapunov's condition, that is, i
S {i | 173
' P.(8,,05)
= s \V1,Y2
lim 71 1 J 73 =0 (4.81)
n>o n . -
{Z 03(8y,62)
i=1
for each finite value of the unknown parameters 0, and 63, 84 is three times con- ;;;f
tinuously differentiable in a neighborhood of the true values for 6, and 65, then ﬁi:j
the least squares estimators of 6; and 63, obtained by minimizing: RS
ST
n o
5(61,82) = 2, (X, - g; (81,82)]% (4.82)  }°
i=1
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3

NEh

T A
A E
= -

X

are (subject to certain restrictions on the partial derivatives of gi) asymptoti-

cally bivariate normal with mean vector (6;,8;) and covariance matrix:

e

A n 3g. \? n 9g; 9

AN 1 2 i 2 i i\

b -= E as (64,6 T 0% (84,8 58. 5@

i A2 1 iz=:1 i (91:02)\ 58, 12=:1 i (90:%) 55, 5, \g

(4.83)

3 =
-

¥

i ,-:

i = 9g. o TAY
o g 9 & g
Ekj Zg: oi (81,62) 86, 96, gga 0% (84,02) 56,

where
9g.\° 9g. 9g. 9g.\
n g. n g. n g. g,
A= Y a5t Ll 1Y 5 5 (4.84)
& \98; &\ 982 & 90 38,
and
2
55 %8 . 55 %8; 98y
) & %8, 36,

i=1
z = | (4.85)
1
-i_.z_i_;“:__i
3, 98, Ly \80g ‘

(See Reference 33 for details.)

';ﬁ If the Xi's are the times between error occurrences, t =~
.*-:\" - 1 _
f."-;‘ E{xl} = ¢[N _ (i — 1)] = gi(N’¢) (4.86)

and

Var{Xi} = 0%(N,¢) = prr 1' o 4.87)
- (i -

with 8 = N and 6, = ¢ in the previous statement of the theorem.

TR N

Thus, &ﬁ ?Qh
s P a

Fah

og. 3g : ;“.

1= L. 1 (4.88) R

I N | @

5
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s

[t

and

-1
it R = — . (4.89)
% W T 2N (i - 1)

A
~—re—
o]

=
T s

»

If the previous expressions are substituted into the asymptotic covariance matr1x,
(1 - o) X 100 percent confidence intervals can be formulated for ¢ and N, replac-
ing any unknowns by their least squares estimates. A similar approach can be
taken to derive confidence intervals for ¢ and N based upon the actual observed
times of failure, ti's, but it is not developed here. :

s
., AT

e
_'\:t 7 T
> Al

R
v
\

el

E
L )

In seeking the estimates and their resulting confidence intervals, the big-
gest problem faced is the difficulty in convergence of the numerical techniques
employed to find the MLEs or least squares estimates. Difficulties encountered
include (see Reference 33) lack of convergence, sensitivity of the iteration
scheme to the starting value, convergence to a saddlepoint or invalid estimate,
and nonuniqueness of the estimates. The choice of a starting point was espec1ally
critical to the maximum likelihood procedures. Littlewood and Verrall? have
shown that a unique maximum at finite N and nonzero ¢ is attained if and only if

M-
»<
[

n
Z (i- 1)Xi

i=1 i=1
'21 (i-1)
i=

otherwise, the MLE for N is ®, Essentially this condition means that the model
can only be applied to software that exhibits software growth, i.e., X,

In any computer 1mp1ementat10n of this model, the previous condition shdhld firlt
be verified to ensure a unique finite maximum exis ; Another problem with the
MLE of N was pointed out by Forman and Singpurwalla3® concerning the instability
of the estimate. If

n

& G-y
n
X X
1=1

(4.91)

is small, there is the problem pointed out by Littlewood and Verrall,3? but if it
is large (so that the times between failures during the latter stages of testing
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are greater than the ones during the earlier stages), a new problem with the esti- ';
g? . mate arises. The WMLE, NML’ tends to be close to n, the number of errors found to R q@;
W v . > %
ﬁ{ date. This tends to give a more optimistic view of current reliability of the . Ejy
Ny program. It gives the impression that the program is very close to beiny error- k& ;55
;ﬁ less when in fact the real error count N may be much larger than n. % :3:
I
" To overcome this drawback, Forman and Singpurwalla suggest that the behavior ‘ s
}ﬁ of the likelihood function be examined in greater detail. In particular, they SO
}3 suggest. the following procedure be employed as a stopping rule:

X, (a) Calculate the MLE of N.
q (b) If Nyr
and go back to step (a).

ey
s
v

R
P IP)
S

LEE,

~ n, go to step (e); if NML >> n, observe another failure inter-

e~
N
]
lr el

val Xn+1

(c) Compute

R(N) = LL00D) | (4.92)

where L is the likelihood function

ey
ot

. .
[ AR

| = &

n .
G LN,¢) = T ¢[N - i+ 1] exp (-¢[N - i +.1]xi) (4.93)
fy i=1 _
s .
LY ¢
_:,.: and Q
e A n .
¢(N) = = a— (4.94)
N2 ox -2 d-Dx)
i=1 i=1
(d) Compute
RN ORMAL (N) = exp [-!g(NML - N)2/var (NML)] (4.95)
using the formula for var(NML) given earlier. ¥
(e) Cgppaif R(N) and RNORMAL(N) for various values of N. If they agree ;:w
well, then NML ~ n is a good estimator of N. If they do not agree, then NML is o Hﬁ;
a misleading estimator of N; observe another failure time interval and go to & &iﬁ
b
step (a). -~ t}ﬁ
ia "ﬂ:.:?
‘.' “ M
o~
v
b
AR
fyp

PN e

o l‘i}-h n'.‘x.j i~
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These suggestions should also be employed in any analysis utilizing this
model.

In Forman and Singpurwalla's paper, a procedure is described for testing the
hypothesis that no errors remain in the program and an optimal time interval for
testing is developed based upon cost. The test of the null hypothesis

HO: N =n, i.e., no errors remain in the program

versus

is performed by exercising the software under operational conditi s for an add.-
tional tlength of time. If a failure is observed, the null hypothesis is re-

jected; otherwise, it is accepted. The additional length of time is estimated as:

= :_&E,Sl;ﬁl (4.96) J

tlength 0 s
ML 2o
;:AZ‘}‘
ey
where B is the desired power of the test, i.e., the probability of rejecting the o
)
nul.’{ hypothesis when it is false. The actually achieved power is at least § t“
, . Aok
if ¢ML is close to ¢. FQﬁ}
The optimal aaditional time, tlength’ of testing based upon cost and mission ﬁ%;{
PR ‘c’.".
time, tm’ is constructed as follows. If the software fails during the additional L}ﬁ

testing time, the cost incurred is ]
i
< < . LS
C;(t) where 0 <t tlength (4.97) I
E‘u:"_"
S
and Cy(L) is a convex nondecreasing function of time representing the cost in- A
curred in testing for time t. If the software passes the additional testing time, t;_
but fails in operational use, the cost is ny
PRI
< + . T
C1(tlength) * Gz for t1ength £t tlength a0 where (4.98) E@g
C; is a fixed cost due to an operational failure of the software. %;g
by
If no software error is encountered during either testing or mission time, the EK{
total cost is ;i;f
R
.’v\."-"
+ < t. . e
C1(tlength) for tlength tm t (4 Qg) ktﬁ
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e i,
o ' : . _
o The total expected cost is therefore: ' g
- z
‘P.\‘j
S f length length ;
e = -ot f - et &
% E{C} . Cy(t)pe Prdt + ) (cl(tlength) + Cg) ¢e ¥rdt tg
] length .
3 ® -¢t EQ
N‘& + / C1 (tlength)q’e dt . (lb . 100) q
2 1;length o E:\
It can be shown that when: ‘ "
dcy(t) | | il
T 2 6 Czexp {¢tm} ) | (4.101) 3
t=0 Eﬂ
= 0 minimizes the expected cost. This means that if the additional cost

tlength
of testing is more than the cost of an operational failure, no additional testing
should be done. If, however,

(% Lyt
[N 3!

dci(t) _ a
—a <6Coexp {0t} (4.102) H
t=o '
then @a
-1 2
dcy(t) :
t = —_— (4.103
length dt = ¢ Cy exp (¢tm) E
minimizes E{C}. .
A final point concerning the Jelinski-Moranda Model3! is that it is equiva=~ ti
lient to Shooman's Model. In Paragraph 4.2.2, Shooman's Model was given as:
Eq X
2(t) =K i "¢ (v) (4.104)
T ¢ | .
i
- i
where A is a proportionality constant, IT is the total number of instructionms, ET
is the total number of errors initially in the program, and ec(t) is the cumula- D}
tive number of errors corrected in the interval 0 to T, normalized by the number 3
of machine instructions. Noting that ET = N in the Jelinski-Moranda Model and
_i-1 L
e (1) = I, forallt, , <ttt (§.105) ;
o
[+
4-22
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the hazard rate function for the Shooman Model is derived. It is

Z(t) = x“¥; - il; 1 ] for t,_ <t <t (4.106)
= %— {N- (-1} (4.107)

T
=¢ {N- (-1} , | (4.108)

letting ¢ = %—. This is precisely the hazard rate for the Jelinski-Moranda Model

T just considered.

The next few paragraphs of this report present, in various amounts of detail,
extensions that have been made to the basic model.

4.2.3.1 Jelinski and Moranda's Model 1 and Model 2. Jelinski and Moranda's
basic model cannot be applied to software programs which are not complete. The
program must be relatively stable with a total of N errors present imitially in
the code. Their first extension of the basic model3€ is ‘for programs that are

undergoing development. If at any point in time an error is discovered, an esti-
mate of the reliability based upon the percentage completed for the module or
program can be given. Specifically, they let S(t) be the nondecreasing fraction
of the total number of statements which a complete program has, measured at time
t, where t is either elapsed wall clock or CPU time. Thus S(0) = 0 and S(TEND)

= 1, where TEND is the end time of the program development. The only requirement

about the nature of the function S(t) is that it be nondecreasing, its values be
known at the times of error occurrence (ti, tz,...,tn), and that it be constant

during the times between error occurrence. The hazard rate is then formulated as

. i=1,0.0,n . (4.109)

z,(t) = ¢8;_, [N-i+ 1] for t ., <t<t,

Here N is interpreted as the error content at the end of program development,
i.e., when S(T Si-l is the fraction of the program which was completed

gxp) = 1
prior to the start of the ith interval, i.e., S. , = S(t The likelihood

- ).
function is then: i~1 i-1

n
L(X1, Xzy00,X ) =i21 65, ([N - i+ 1] exp {-08, (N - i+ 1]X;} (4.110)

where again

, (4.111)

The MLEs are obtained as the solutions to the following system of equations.
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“ Model 1 0l
p Estimates - Maximum Likelihood Fﬂ
& « ~
N5 n
it 1 :
) ."‘;‘ '21 N {; &1
L ~ i= - b
‘ dyp 1 Nyp,p = i+1 (4.112)
! n ﬁq
2: Si-lxi LJ
' i=1
and n E‘
n A 5;% S;-1%4 )
Z 8.y (gp g = 1+ DX = (4.113) Lq

i=1 NML,I -i+1

Notice that if Si-l = 1 for all i, then the MLEs ar the same &s in the previous

M=
K

RS,

paragraph. The MLEs are very similar to the ones obtained for the basic model in

Paragraph 4.2.3. In these equations there is Si- Xi, while in the previocus

section there were xi's‘ The Si_i has the effect of reducing the time between

= 2

the ith and (i - 1)st error occarrence by the same fraction &s the percentage of
the program completed.

=2
} &5 Y WYY
I
d .

‘The MLE of the MTBF, after n errors have been observed, is easily established
as:

MIBF, = R i} . (4.114)
S(ty) (Nyp, 1 = By, 4

Fra e
wilag

Model 236 also allows for a developing program, but the requirement of know-
ing the fraction completed at each stage is eliminated. For a developing program,
it is hard to envision a case where the manager knows with certainty the size of
the end program. Moreover the assumption,

O

AR

8(t) =8, t, . <t<t (4.115)

i-1 i?

B

i.e., a constant function between times of error occurrence, is unrealistic. The
very nature of a developing program dictates a continuously changing function of
time.
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i B S
: For Model 2, the assumption is made that the error-making rate for the pro- N
§ gramming team (Ep) is constant over the time of program development. The hazard
rate at time t is then taken to be: G
= - (1 - 4 YJ‘“ '(
z(t) = 616, _, E, (1-1], for t, ;Stgt; (4.116) a0
: w'\-'.
' ‘where ¢ is the constant of proportionality, and Gi-l is the number of lines of éﬂ
:f', b code developed by the time of the (i - 1)st error occurrence. Again the basic -,;::j:::,
i]‘ assumption is that the rate of error occurrence is proportional to the number of ?“‘lTQ-’,;‘
ai ‘:,; errors remaining in the code. G, , E o is the total error count present in the e
fﬂ Vi G,.y lines of code; of which i - 1 have been found. The likelihood function is N
o again expressed as (using the model assumptions of the previous section): g.,:
RN \ RN |
g o R
. (o L(xl,nco,xn) - ‘Ij ¢ [Gi-l EP - (1 - 1)] exp (-¢xi[Gi_1 Ep -(1-1)])n (4.117) ‘E;:“:‘?'
'h: 1"'1 |':L;h'
d , -:‘\':
~ The MLEs of ¢ and E_ are obtained as the solution to the resulting systems of IR
N equations. P e
i Model 2 . | o i
Estimates - Maximum Likelihood Rerry
5 n G,_ ' :‘-ﬁ"
g A d, (4.118) o
. i1 G, , E =« (i - 1) N
¢ML 2 - -1 P ik
’ LG X '
b { Z 'i."l i -::‘:::»
i=1 i
R
\: 4 .and n :.‘T__:::::
n N n i§1 i1 %y ‘ R
- i - 1 - . . . by
o 12__: 65, E, (i - DIX, - 5 (4.119) e
t., =1 Z i-1 RIWY
' ; ~— X
i=1 6, ; E-(i-1) Bl
2 ’ i
= An estimate of the MIBF is then obtained as: EJM
i MIBF; = = L. . (4.120) :
N ¢ML,2 [GnEp - nj
..'\
f-*» 4-25
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i E

d %

In the early stages of development of the program, the assumptioa that Ep is

constant is questionable. As the programmers experience a learning curve phencm-

ena the error rate is expected to go down. Moreover, if the programmers' team
experiences a turnover in personnel, with inexperienced people being hired at
various points in the program development, it seems hard to justify a constant Ep'

The model seems suitable if the development time frame can be broken up into
smaller time regions over which Ep can be taken to be coanstant.

-‘3"-;“- ¥ s

2

8 Y

_ .

P S T I
el

4.2.3.2 Lipow's Extension Model. Lipow37 proposed an extension to the
Jelinski-Moranda Model by allowing more than one error occurrence during an inter-
val of testing and also allowing that all errors found in a given testing interval
need not be corrected by the start of the next testing period. Specifically, the
model assumptions are:

A
aTs e

»
:ﬁ Model Assumptions

"\'l

) (a) The rate of error deteciion is proportional to the current errox content
o of a program.

g; (b) All errors are equally likely to occur and are independent of each
e other.

£

(c¢) Each error is of the same order of sevarity as any other error.

(d) The error rate remains constant over the testing interval.

‘~1 A\ u'\c
(e) The software operates in a similar manner as the anticipated operational kg tﬁk
usage. ti-f:':

(f) During a testing interval i, fi errors are discovered but only n, are
corrected in the time frame.

~F1
——
»
s
L
-

o The previous assumptions are identical to the assumptions of the Jelinski- i%* A
T Moranda Model except for (f). Suppose there are M periods of testing in which L] P
:3 testing interval i is of length X, During this time frame, fi errors are dis- e
fiz covered, of which n, are corrected. Assuming the error rate remains constant Eﬁ ?:ﬁ
Y (YR

‘v’

Py Y

v
€ s
»

FA I Y]
Eie & ~& _ 8
T, e .
2T
PR
o9
S = XY 4

during each of the M testing periods [assumption (d)], the hazard rate during the
ith testing period is:

2(t) = 0IN - F, ;1 £, <ttty (4.121) Y
X
where tb
¢ is the proportionality constant,

N is again the total number of errors initially present in the program.
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i-1 '
Fi-l = Z nj is the total number of errors corrected up through the (i-1)st
=1

testing intervals, and ti is the time measured in either CPU or wall clock time

'

of the end of the ith testing interval (xi = ti - ti-l)' The ti's are fixed
and thus, are not random as in the Jelinski-Moranda Model. Taking the number of

'«

o——
w3
q'__lf

failures, fi’ in the ith interval to be a Poisson random variable with mean
N Z(ti)xi, the likelihood is:
.
|

: L(Ey,. e ) = ol Ey ] :.TXP oI - Fyoql; )

< L
38,00

»
D)
%

. (4.122)

i=1 i

Taking the partial derivatives with respect to ¢ and N of 2n L and setting the re-
RE sultiug equations equal to zero, the MLEs can be obtained as solutions to the fol-
Ea lowing system of equations:

Estimates - Maximum Likelihood

A AR § P Rt . B E R ——

-"l
D! F

| ¢L = 9 (4.123)
q ' and

N 3:3 FM M fi '

3 t;-.g . z Y (4.124)
| "t - ] = -

X NL + 1 - B/A i=1 NL Fi-l

' where

P Y M

3 FM = 2: £., the total number of errors found in the M periods of testing,
SR =1

FA R

h M

i - B= ) (F,_,+Dx , (4.125)
R i=1

b b

o and

ot M

i L A= Y, X (4.126)

s LTS

«
——
r
«_x

the total length of the testing periods. From these MLEs, the maximum likelihood
of the mean time until the next failure is:

MTBF = — (4.127)

A
L
h

0
.

-
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Lipow gives the asymptotic variance of the estimates as:

~ M £,
var {¢;} = }: — - /D, (4.128)
i=1 (NL - Fi-l)
-~ _ M : ,
var {N} = ~— |, (4.129)
¢3D
and
A . M )
cov (N, ¢;) =~ 3 x, /D (4.130)
i=
where
OG> i * o) (4.131)
D = =— x : - X, . .131
¢L i=1 (NL - Fi..l)z s

Notice that if fi = =1,...,M i.e., only one error is discovered per time

period, and Fi-l = i - 1 so that all errors are corrected upon discovery, then all
of the estimates and their variances are precisely the formulas derived for the
Jelinski-Moranda Model.

Using the previous formulas, large sample confidence intervals can be given
for ¢ and N as:

100 X (1 - o) percent:
Confidence Intervals

Zl_ngar{z)L} ;
2

¢L + Zi~ngar{¢L} (4.132)
2
and

N, - Zl-_o_! var{NL} , NL + Zl_gdvar{NL} (4.133)

2 2
with Z, ~ chosen from a standard normal table so that:
2
=2
P{z Z zl- } 9 (4-134)

a
2
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Note that if

£f.= n j=l,..., M (4.135)

h| J .

s

i.e., the number of errors corrected in the ith interval is the same as the number
discovered, then the previous model reduces to a model considered by Sukert1?,
Gephart et.al.% and Lipow,38

4.2,.3.3 Rushforth, Staffanson, and Crawford's Model. The last model con-
sidered as an extension of the Jelinski-Moranda Model is a model by Rushforth,
Staffanson, and Crawford.3? This model was originally given as an extension to
an error generation model proposed by Shooman.%® A model proposed by Tal and
Barber49 is also very similar to the one discussed. The basic idea for this
class of models is to relax the assumption that the error correction process is
perfect. This class allows for the introduction of new errors into the program
in the correction of inherent ones. The specific assumptions for these models
are given in the following.

Model Assumptions

(a) The rate of error detection is proportional to the current error content
of the program.

'(b) All errors are equally likely to occur and are independent of each
other. .

(c¢) Each error is of the same order of severity as any other error.

(d) The error rate remains constant over the testing interval of the parti-
cular program version undergoing testing.

(e) The software is operated in a similar manner as the anticipated opera-
tional usage.

(f) No attempt is made to correct detected errors at the time of error
occurrence. Instead, at specified points in time tq, tz,...,tj,... a new cor-
rected version of the program is provided.

(g) Of the detected errors reported, some are corrected, some are not, and
some in the correction process cause the introduction of new errors.

(h) The error correction rate, rc(t), is proportional to both the error
detection rate, rd(t), and the error backlog nb(t), defined as the difference
between the number of errors detected by time t minus the number of errors cor-

rected at that time. Specifically, rc(t) is taken as:

r(t) = a ry(t) + pn, (v). "(4.136)
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(i) The rate of error generation is assumed proportional to the error-
correction rate.

r(t) = y r (t). (4.137)
(j) The error detection process, nd(t), is completely known.

From these assumptions, Rushforth, Staffanson, and Crawford's Model is formu-
lated as shown in the following.

For any model version j,

Nj =N - nc(tj-l) + ns(tj-l) y (4.138)

is the total number of errors present in version j,

+

N,
J
N is the initial number of errors present,

nc(tj-l) is the total number of errors corrected up through program version

j=1, and

ns<tj-1) is the total number of errors introduced into the program in the
correction of the previous (j - 1) versions. From assumption (a),

- ]
ry(t) =9 Nj for all t's t,_, St <t (4.139)
where ¢ is the proportionality constant. From assumption (h), if nc(t) is the
number of errors detected up through time t, then,

nb(t) nd(t) - nc(t) (4.140)

so that:

r (t) = @ rg(t) + B (ay(t) - n (e)). | (4.161)

Finally, using the fact that:

. .
n(t) = [ r (x)dx | (4.142)

and

(4.143)

]

"
n

7~
L3
N
(=9
»

nc(t)
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"~ it can be drawn from assumption (i) that:

nE(t) = 6/§ re(x)dx =y OJE rc(x)dx =y nc(t). (4.144)
Hence,
rg(e) = ¢N, (4.145)
=¢ [N - nc(tj_l) +n, (tj_l)] (4.146)
=0 N = (t; )+ v, (t5)] (4.147)
= N = (1 =) n (&, )] by St 2L (4.148)
and
r (t) =ary (tj_l) f B[nd(tj_l) - nc(tj_l)] | (4.149)
= 9N, +8B [ny (tj_l) -, (tj_l)] (4.150)
=a¢ [N=- (1-y) n_ (tj_l)] + B [ny (tj_l) -n, (tj_l)].
b St Sty ' {4.151)
If
¢, = (1 -Y)¢ (4.152)
and
N, =NQ-7Y), (4.153)
the two equations become:
rg(t) = ¢, [N, = n_ (tj_l)] (4.154)
and
r(t) =a ¢, [N, -n  (t, Pl B Iny (tj_l) - n, (tj_l)] (6.155)
tjg Sttt

involving five unknowns N , ¢a’ a, B, rc(t). From assumption (j), nd(t) is known
exactly so that,
dnd(t)

rd(t) = it (4.156)

is known exactly.
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Rushforth, Staffanson, and Crawford show through a linear system's approach
that the two equations can be expressed as: ' '

nJ(tj) = nd(tj_l) - ¢a Atj + Na ¢a Atj (4.157)
and
ol = Ba myltyg) * nc(tyy) - olto) B (B + aby] |
(4.158)
+ uNa ¢a Atj
with
s, = ty - i1 (4.159)

Here therc are two equations in four unknowns Na’ ¢a’ o, and B. If the addi-
tional assumption is made that At is a constant T (i.e., the new program versions

are introduced as equally spaced points in time), then the two equations caa be
reexpressed as: : :

n,(t.) - n,(t._,) .
gey = (&4 T4l =N ¢, 1378 (4.160)
J n (t,)) -n_ (t. ;) ' ,
¢t c *j-1 2x1
where
1 -¢T :
Loga = O (4.161)
BT 1 - T[B+ ¢,0]
and .
Bog1 = (T} - | | " (4.162)
oT

Their paper deveiops the estimates of the four unknowns using a least squares
approach. The quantity for which the minimum is sought is: ~

K
z: (Q(ti) - observed increments)? (4.163)
i=1 '
where X is the number of program versions,
- i"'l S
g(ti) = Na¢a L™ B, (4.164)
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q 5 : :

yo= ‘

%,

Y !g and the observed increments. =

o S n,(t,) - n.(t. .)

“ Eg | N (43 e (4.165) &
o) L S R nc(tj) - nc(pj_l) ; 
: ifference in number detected from one version |
o , [to the next n IR
! = t::‘ ;
. difference in number corrected from one version V
< to the next <
B "
51 A computer program was developed to perform this nonlinear minimization process
] and is provided in their paper.

% 4.2.4 Schick-Wolverton Model

The next class of model considered was originally proposed by George Schick
and Ray Wolverton.® Their model assumes that the hazard rate function is not
only proportional to the number of errors in the program, but proportional to the
amount of testing time as well. Their logic is that as testing progresses on a
s program, the chance of detecting errors increases because of "zeroing-in" on
those sections of code in which errors lie. Specifically, their model is based
on the following assumptions:

!

-5
(WL S I

AR

{f : Model Assumptions

(a) The rate of error detection is proportional to the current error content
’3 of a program and to the amount of time spent in testing.
A

(b) All errors are equally likely to occur and are independent of each
r‘ﬁ other.

(c) Each error is of the same order of severity as any other error.

& (d) The software is operated in a similar manner as the anticipated opera-
W tional usage.

(5 (e) The errors are corrected instantaneously without introduction of new
b .errors into the program.

) The one major difference between these assumptions and the Jelinski-Moranda
&ﬂ Model is assumption (a) with the error rate also being proportional to the amount
K|

of testing time.

i The form of the hazard rate function is:

s &

s
o

2(x) = ¢ N - (i - DIX, , | (4.166)
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Al

where Xi is the amount of testing time spent between the discovery of the s
(i - 1)st error at time tiq and the ith error at time ti. The quantity ¢ is the

proportionality constant of assumption (a) and N is the total number of errors
initially in the program. Figure 4-2 is a plot of this function over time.
Using the relationship established earlier between the hazard rate function, the
reliability function, and the MTBF, it can be szen that:
2
X,
R(X,) = exp {~¢ [N - (i - 1)] fl }  {the Rayleigh distribution) {4.167)

I
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MTEF = [ RGE =y et NN . (4.168)

o

s v
DR A
2.

“Aﬂ
> -
(30}

To develop the MLEs of ¢ and N, suppose errors are discovered at times tj,

i; ceoty and suppose Xi =t -t g Then; from equation 4.167. ,3
py | X, i
o R(X,) = exp {-¢[N - (i - D] 5=} . (4.169)

AAXE ) e
EX:

t;j Now f(Xi) = -R'(Xi) so the distribution of the time between the (i - 1)st and ith EQ
v .
5:ﬂ error is: i,
A 2

- 1 &
= £(X,) = 00N - G- DIXg exp (00N - G -DIFE ) . (4.170)
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5 R | o
ﬁ From assumption (b), the likelihood function based upon the Xi's is:
N n .
¥ LXg,oonX ) = T £ ) = T ¢[N - (4 - DIX, exp {- ¢[N~ (i - 1)] }
9N | i=1 i=1
B

(4.171)

Taking the partial derivatives with respect to ¢ and N of the log of the likeli-
.t hood function,

2
9nl _ n [N - (- DIX

il n
g@ =9 EE& 5 (4.172)
%ﬁ and
) X2
“ ofnL _ & 1 204
. = - ¢ X, (4.173)
1 oN i};l N = (i - 1)] 2 2

-
1
—

,._?..
ST

Setting the previous equations equal to zero, the MLEs are obtained as solutions
to the following system of equations:

.

.

Estimates - Maximum Likelihood
g bgy = 2n (4.176)
- n A
3 [Ny, - (i - 1)]x2
| &1 SW i
{:J
and

£
(4 Q 1 o I 2

Z = . = 0y 1 X (4.175)

i=1l [Noy = (4 = 1)] A i=1 .

SW 3

Y
')

The MLE of the MTBF is then given as:

EA MIBF = \/ S— . (4.176) ?-:;3
20gy(Ngy - nl i

ki The only data requirement to implement this model is: L

Data Requirement \:

The time of error occurrences, (t1,...,tn), or conversely, ihe time between o

ey
error occurrences, i.e., (Xi =t - ti-l)’ RN
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Using the asymptotic properties of the MLEs, it can be shoﬁn (References 17
and 33) that for large n, the large sample variances are:

n 1
2 - (4.177)
N =1 O, - i+ 12,
var {0g,} = D;
var {No,} = =o— , (4.178)
W e
n 2
A A "Z Xi
cov (Nsw, ¢Sw) = i=1 , (4.179)
2D,
and 2
fn_: n ~2 i X‘f (4.180)
Dy = - Oury - =] . .180
{1 (NSw -1+ 1) SW = 2

100 X (1 - a) percent confidence intervals can then be constructed ai before as:

Confidence Intervals

Ogy ~ zl-gt_ var{¢sw} y Ogy ¥ Zl_aJvar {¢Sw} | (4,181)

2 2
and
Ngy - zl-g var {Ngi} ,  Ngy + Zl-g Jvar {Ngy} (4.182)
2 2
where
zl-a is chosen from a standard normal table so that:
2
9 -— g_ !
P {z > Zl-g} =5 (4.183)
2

The expected time to remove the remaining N - n errors after n errors are
discovered is:

Expected Time to Remove the Remaining N - n Errors

N
(4.184)

i
JZMN -G -1l

j=n+1

4-36

T

(XY

LEER 2

2 5
&

-

g 2l P )

-ty 3,

36 3

1 55% 4
SR

FEOSs §

Y

.

»,
N

l’.‘:—"

ey
Lot

(&

Fad
[t}
LN

L

&

»

5 %

T
at s




-
=
J
N
)

'GE o B V3

oy,
:L..‘-.l-‘

i

:

P LA T P LS BT R
N2 RA I A RN

DA dive ]

et DI HORA RS AT A T i P RN PR R e ) VOLT A L LI

NSWC TR 82-171

N=-n i ( ;
(- "-———T—— . v 4.185
vqi=1 2¢1« o ' :

The large sample MLEs of this parameter are therefore:

™

- Estimated Time to Remove the Remaining N - n Errors

. s ~

Ng~n
= SV n__. : (4.186)
=1 205yt

As in the Jelinski-Moranda Model, the least squares estimates of ¢ and N are
obtained by minimizing: :

2

n n
= 0
i}; (X, - MIBF)? = iz=:1 X, #2¢[N'- D] . (4.187)

Taking the partial derivatives with respect to ¢ and N, the least squares esti-
mates are obtained as the solutions to the following pair of equations:

Estimates - Least Squares

n
i 2
n (& .
R 7 \F Mg g -iv
s, 8w = - (4.188)
- i i 2
2,
=1 (Vg gy =1+ 1)
and
5. & > 1 )
x = [ —x x . (4.189
& s 3/2 F ot o 2
=1 (Npggy-i+1) 200 gy 171 (Npg gy =i+ 1)

The asymptotic variances for these estimates can be developed using the approach
taken in the Jelinski-Moranda section of this paper.

For this report, only one basic extension of the Schick-Wolverton Model pro-
posed by Lipow3® is considered.

4.2.4.1 Lipow's Extension to the Schick-Wolverton Model. Lipow's Model
uses the same assumptions as the Schick-Wolverton Model except assumption (a) of
the previous paragraph is replaced by

4-37
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(a) The rate of error detection is proportional to the current error con-

3 A0

'l
- tent of the program and the total time previously spent in testing including an ﬁg
o "averaged" error search time during the curreat time interval of testing.
;‘"t" . i
'%: Another way in whick this model differs from the previous one (hence, it is E%
ﬁxs not a true extension) is that it is an error count model rather than one using the o
"time between error occurrences." Suppose fi 2rrors are discovered during the
5* ith testing interval and suppose Fi = f is the cumulative number of errors %
el =1
oK discovered up through i testing intervals. Yn
N
i Based upon the model assumptions for the hazard rate function, it can be seen e
that: ‘ ~
4
i
Z(x ) = ¢N ~ F 1 [X +x.], (4.190)
-1 i @)
‘ &
where
X is the amount of testing time spent between the end of testing period %ﬁ
i = 1 and the end of the ith testing period, )
and ) Hi
‘il ( ) K
K,_ = X. ’ 4:191 'F:,
i-1 j=1 W
i.e., the cumulative amount of testing time spent through i « 1 intervals.
L3
Since the reliability function is related to the hazard rate as:
' s
R(x) = exp {- [ 2(v)dv} (4.192) GO
0 : g
then 3 e
*i v 3]
= - \ + - . . s i
R(x,) = exp { of O[N - F, )] (X, ; + 5lav} (4.193) ¥ i1
i.e.,
= - - 2 »
R(xi) exp {~¢[N Fi-ll [gi_lxi + xi] |- .194)
4
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N R R A A o B R e Y N D e Y

earlier,
N _
= f R(xi)dxi
o
® x%
= emfoln - ) 0+ g oy
o
® [N~ F, .]
- exp{-¢ i-1 2 - 4x2 2
= af { — [xi M IR R 4’—‘1-1]}‘“‘1

(N-F 4]
¢ “"‘I‘““ L(x + 2%, )

- qf“ exp{

= exp {¢ [N F. _1] _1_1} fexp{ ¢ [N

an

-F.

=exp{ ¢ [N - F:.-l]—r )
i-

[x; - (-2%;_,)1?

expl- —5
e

gﬂn

¢[N = Fi"].]

dxi

= exp {¢[N -

’

o An
yo - F, 11

i 1]—1 1}

exp {0[N - F,_,1x2_}.

4-39

2 2
- 431-1]}dx1

1

-1 2
1 1 (xi + 23._1) dxi

oIN - Fl_IT

- 1/2

P UL Sl e e e

(4.195)

(4.196)

(4.197)

(4.198)

(4.199)

(4.200)

(4.201)

(4.202)
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Sukert!? gives the MLEs for ¢ and N as the solutions to the fOIIOW1ng system of
equations:

Estimates - Maximum Likelihood

Fy
o I . | (4.203)
X _
Z; (NLSW Fl l)x (X1~1 t 1)
i=1 2
and
M fi ~ M X, '
& -,‘-—————-N T = ¢LS Z _‘1- + -2—-) ’ (4"204)
LSW i-1 i=]

A

(Note: Sukert left out Orgy 10 his equation corresponding to 4-204.)
M _

M is the number of testing intervals and Fy =3 £, is the total number of errors
\ i=1

found in all the testing intervals. The MLE of the MTBF and the expected time to

remove the remaining N = FM errors are:

MTBF = ![ﬁ- exp { ¢st [NLSW - MIKM}‘ (4.205)
\l OrowlNrgw = Tyl

and

Estimated Time to Remove Remaining N - FM Errors = .

z":l y1 e"P{"’st [Npgw - Fjli‘-j'}
J . (4.206)

=
\r"st[Nst ' j]

Sukert. also provides the 1arge sample asymptotic varlances of the estimates
for ¢ and N as: .

£,

var {$poul = 2: o lF —| m : (4.207)
=1 (Npgy - Fyoy)
A F}{
var {NLSW} = s : 208
OrswP
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and
1 "
| a A - Lx (X + ) (4.209)
F | o cov (Npgpbygy) = 351 2
where _
Fy M £ M %\ 2
D= =p— [ — - X% &y ts) (4.210)

~ - 2 &
bpgw \i=1 (pgy = F; ) =1

As in the previous paragraphs, large sample confidence intervals can be con-
structed for ¢ and N. From the previous formulas, it can be noticed that if:

X..q is set = 0 and for all i,

'fi'= 1i=1,...,n, so that

IR

4
a3

F.oy=i- 1,

LA

then the formulas for the estimates and their variances become those associated
with the Schick~Wolverton Model. :

i 4.2.5 Generalized Poisson Model

Angus, and Emoto33 for the Hughes Aircraft Company under contract to the Rome Air
Development Center. Their model can be considered to be analogous in form to
both the Jelinski-Moranda and Schick-Wolverton Models but taken within the error
: count framework. With a slight modification, it can be shown to be an extension
o of Lipow's Model as well. The model assumptions are given in the following.

f The Generallzed Poisson Model (GPM) was given in a report by Schafer, Alter,
h

&&' Model Assumptions
j

(a) The'expected number of errors occurring in any time interval is propor-
tional to the error content at the time of testing and to some function of the
E? amount of time spent in error testing.

13 (b) All errors are equally likely to occur and are independent of each
t; other.

(c) Each error is of the same order of severity as any other error.

. 6"
&3 {(d) The software is operated in a similar manner as the anticipated opera-
tional usage.

(e) The errors are corrected at the ends of the testing intervals without
introduction of new errors into the program. (Note: Errors discovered in one
_ testing interval can be corrected in others; the only restriction is that the
Fﬁ error corrections come at the end of the testing intervals.)

4-41
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Using the assumptions, their model is constructed as follows. Suppose the
testing intervals are of length XiyeeosXy and suppose fi ervors are discovered in

i? the ith interval. At the end of the ith interval, a total of Mi errors are cor-
2 rected. In the previous extensions of the Jelinski-Moranda and Schick-Wolverton
N i

E‘ Models, Mi was set to 2: fj’ i.e., all errors found in an interval are corrected
Rt : j=1

B at the end of the interval. This model relaxes this assumption.

Ry

&i From assumption (a),

2

“ E{fi} = ¢[N - Mi-llgi(xl’xz"“.'xi) (40211)
R

N where ¢ is the proportionality constant, N is the initial number of erxrors, and 8;

is some function of the amount of testing time spent previously and currently.
Usually, 8; is nondecreasing with the logic that as more time is spent in tcsting,

more errors are discovered. In the paper by Schafer, et.al., the function 8 is
taken to be:

a
gi(xl,xg,...,xi) =Xy . (4.212)

This restriction is relaxed to show a broader class of adaptability.

For example, if

by

' (4.213)

8i(x1,oao,xi) =xi ’

{
P
T
Sl G e’ SR )
»

then the resulting formulas for the estimates are the same as the Jelinski-
Moranda Model; if

gi(x1,...,xi) = x§/2, (4.214)

then the formulas are the same as the Schick-Wolverton Model; and if

i-] X,
- L
gi(x1,...,xi) = X, ;Ei X, t 3 , (4.215)

Lipow's formulas are obtained.

From assumptiohs (a) and (b), the joint density of the fi's is:

s
n & I
£(f1,...,£) = T £(f,) : (4.216) &:
i=1 VA

| g

c x

n [¢(N - Mi-l)gi(xl""’xi)] i ‘ (4.217) f:

= n - exp {-p(N - M._.)g.(x1,...,%x.)}; oy N

. i-17°1 i S

i=1 ! B EF

{2 B

4=42 l
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a i.e., fi is Poisson with mean = ¢(N - Mi-l)gi' : (4.218)

Hence, the likelihood function L is:

L(¢,N) = ﬁ £(£,) (4.219)

i=1
g 50 that

n _
,_ 2nL(¢,N) = Y 2nf(f,) (4.220)
Uy p— 1
N | i=1
. i n n
1:,:3 = X £.n¢ + glfizn(n - M)+ g_;fizngi (4.221)
fn“‘\ n n
- El (N - M, g, ~ g::l fnft .
H Thus, taking the partial derivatives with respect to ¢ and N, ﬁhe following is
obtained:

") 0

98nL(,N) i§1 £ - M) | (4.222)
4 90 = ) & i-178§ '
A |

and
f 1

92nL(¢,N L

. ar(i = Z N -iM, - ¢ ,Z 8 - . (4.223)
i=1 i-1 =1

fa1
i

Thus the MLEs of ¢ and N are solutions to the following pairs of equations:
i

Estimates - Maxiium Likelihood

e
H
ot

™M
h
[¥ %

depy = " . (4.2264)
GPM

-; -qvn".‘,b A

"‘&.J‘“. Y a
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and
n £ R n .
Eéﬂ N =M, ) Pcen 5;;31 ‘ ‘ (4.225)
> GPM i-1 ,
If fi= 1 i= 1’~0~’n’ Mi"l = i'l,'thEH g'.i, = xi 8ive5 the _Cquations for the
' - x2

Jelinski-Moranda Model; 8 = 55 gives the Schick-Wolverton Model equations; and

i=1 - X,
and if g, = x.J ) -x, + == , the MLEs equations for Lipow's Model are obtained.
i i . J 2 -

Following the development of the asymptotic variances of the MLEs given in
the Hughes report,

P ¢ . '
§ = AGPM. E , S (4.226)
Nopy
has for large n, a covariance matrix that is approximately
_E{ ezan} K {aZan} -1
I 99 { 5gaW
- | - (4.227)
E azan} p[ 32¢nL)
3N { “ONZ )
Now,
£,
922nL ni;
Lo (6.228)
5 i=1 ¢?
9%gnL _ o
o (4.229)
L T R A T
N RRANE AT O N

R R R R e T o S e NV S LR Y T i 3, 4
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! fe 87,

«
LS
-t

and

o
R
=
Faraccia T At
- = £ r)" =
LAy [z e
-

3 il . 5™ i (4.230)

)
Q
=

»n

m

—
2>

[
=

:
e
[}
—

thus,

'

L~

e
i

a9 R
P, .
fLaLEL :
L ey

£ I

92gnL 1 &
- E = — E{f.}
{ op2 } 2 12;1 L

N

1 n
~ ) =

‘ 3 - 4.232

=g Lo

4
)

(4.233)

1

t
=

r—t—
'

M=
Ky

[ ay
1

n
g
=1 i

and

v . | _
i -E{*“ﬂ I 3 6N - M, y)g; (4.234)

(4.235)

Hence,

e~ s
S

N
.ot

Tﬂ
INgEE
]
a3
2>
[p]
2~
=
1
=
‘-l»
t
—
-
oe
[
™M=
12}
H

Oepy 1 (4.236)

O >
=

>

e}

o
|-l

)
o
Baodhs
» .
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-
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2
: X, i-1 X,
Note if g, is the appropriate function 9 X., 5= . OF X, [z: x, + 5=1¢ ,
i i’ 2 1 j=1 J 2
and if
~ n &84 n fi
dopy 2 =Y , (4.243)

& A
LR e
d "
) Aoyl

| . . - - 2
=1 (Ngpy = Mj.) 171 (Ngpy - M;_y)

P et i
.. -

o s T
P
L

then not only are the MLEs for the GPM the same as the previous paragraphs, but
the asymptotic variances are the same as well.

\

% . 40
g e

From the GPM formulation, the expected number of errors in the (n + 1)st in-
?‘ terval of testing is

e{ = 8 00 Mgy (o) : (4.204)

4 -
e

|
Gy

.
X

¢ 52

where X 41 is the anticipated testing time for the (n + 1)st session. The MLE is

B I

therefora vy
Ble 1= Gooy Bopy = M )8g4p € ) Gos)
oty = Popn Mopy = MolBaer (K1oer o ¥pay) ‘ E2
its asymptotic variaﬂcé is therefore
e oife ) oE{t ) 5 E{f,, o
it = | 5% 5N ; 5% oK
: ‘ , L ~ ' (4.246)
! “ | Mgy ~ M)8n41  PgeM Bari 23 Ngpy = M)8ae1  Ocp Bnvr|  (4-247)
g ~ -
Elt; . ) . ) .
. = Ogpy = "84y %o Bavl Yo 5 8 AN A T
4 =1 (Ngpy - M) b AcpiBat
n
\‘ - f
- = £ 3
D*AZ
" YGen (4.248)
ﬁ
) 4=47
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o WY N X K e N
§ W]

: - 2 2 1 : % 5,
N (NGPH 'Mn) 8n+1 Poem El Mo - M. ) , G
~ D% GEM ~ Ti-1

P
a ¥

20 Wopy = Mene1 511 | &  f (4.249)
L3 ¥ . 4 -

From the previous results, large sample 100 X (1 - a) percent confidence.
intervals for the various parameters can be constructed as: ' ' ‘

e
e

P i
Eov &
S

O B 3

v 3 e
‘, . . . . ._ {
'? Confidence Intervals iy
“ tnst
‘\..| 7 Yo
‘o W AL

AP

%eM ~ P1-q v ."“{%pn}' %M * Z1-q J-"“{ ¢GPM} o :
2 2 "

(4.250)

2l
. R

«

Nopy = 21-9 "“{Ncpu}' Nopy + Z1q ¥ "“{NGBM}
) )

<,

I’s I" &
LI %W
.

m and , | } |
‘i‘: E{fnﬂ} - Zl_%Jvar{ E {fn-i-l}} , E{fnﬂ} + Zl_% #va;{ E {fnﬂ}} 1 .251) :
: R
A

where :

P {z > Zl-a} = (4.252)

2 B

and Z is a standard normal random variable.

S5
X

.<,,
e
'\'-‘n_-_
(LR 8

v
!‘<l- 1) :’
Teh
¥

2

“xTsla

LR
(RS e

B

4-48

P R T L G Y T I T L T P I i 2% Tl St N A S I I A L S A AP LU B R ISt e IR SR U TR TRV TN S S L.
LIS IOl ) RLPRS) Ty NOPATR """'i' . 5 T R R I A LR, Wt Wt - MR
PR e e I T L e S T Y e

- L R U Bl '."‘F}- N LW ., R
PR R A, Y :t&.5-.?.f_,‘..,.-.’.‘.7’\'..?*.a_!.\aﬁ!‘md.»_h.\;'&.'-‘a.. s el sy RN




VT YoF LW 0
;= Ok

NSWC TR 82-171

AP
IR

Z 5

In the Hughes report, the least squares estimates are also derived. Those
estimkates are chosen to minimize: , :

n
Ej' § = i};;l (£, - ¢ (N-M, g 1% ' (4.253)

By taking the partiél derivatives of S with resprct to ¢ snd N,

b

e,
i

2Rl

g
&
@ .
(71

ol

! ‘n ' ) o
-2 121 [£,- 6N - M, _1)gg) (N =M, ))g; {4.254)

Q
=2

and

| Xl
St
V- .

} 8 _ ., % [£,- ¢(N )g; 10 - (4.255)
e , aN & i-l 8198, ) s v

gﬁ The least squares estimates are then obtained as the solutions to the following g
& system of equations: ‘|
-y Estimates - Least Squares N v W B
" ) g £.8, (
4 ws,ce * |
. ’ A s

E N )82 ' . B (4.256) 1\;

(=N
'
—
-

and

Mg

£.g. (N ~M._.) - ¢ D (N aow - M._)2%2% =0.
i%i VLS,GPM T Ti-1 LS,GPM & “LS,GPM - Ti-1° i (4.257)

[N
H
-

Using the large sample results for leadt squares estimators given in Para-
graph 4.2.3 of this report and using the Hughes report, it can be shown that:

~ A

8 , N

2Ls,GPM ~ (q’LS GPM (4.258)

LS,GPM)
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zr'ﬂ >
is asymptoticully normally distributed with mean vector (¢,N) and coviriance ma- gg
trix: g
S N 33 o o2 N 2,3 Eg
L %s,om Mus, ooy~ i8] 2 s, cpnus, oo~ Mi1)e
v ‘ o) 53
Za ~ !12 2l 2“).
~CPN N . . i
{ X - N 3 4 - *‘
&, 418, oenMus,con ~ #i1)% gg% ¥is,cen PFus ey ~ Hi-1)8] hj BX
| y (4.239) ¥
wLere Eg

n

A n A A )
\ 2 2 - - 2
3;'1 9Ls,ceMBi 1Z=:1 ®s,6puMes, ey M; 8

}E: = s ‘ , 3 (4-2150) %

DGR - 20

n ~ 'S n FS
- - 2 - 2.2
i§=:1 b5, cpu(Nis, oo = Mi-1)85 i>=:1 (Npg,ceym = Mi-1)%8f ﬂ

and .
o o2 2 (3 2,2 2\ 2 =
A= 12=:1 %13, GemM8i 1);1 (Npg opm = Mi-1)%87)" E ¢Ls GPM(NLS oem - Mi-P8%) -
(4.2061)
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Large sample confidence intervals can then be constructed using these resul.ts
as before. "

The data requirements necessary to implement this model are:

A

5
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=

ane

Data Requirements

o
L
-e-4
e

(a) The lengths of the various testing intervals, i.e.,  STRRRPL S : 2y
-1

(b) The number of errors corrected at the end of each testing period, and
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[y

(c) The number of errors discovered in each interval of testing, i.e., fi's.

!! In the Hughes report33, an_extenéive analysis was done on the properties of
= the least squares and MLEs for the specific model of gi(x1,...,xi) = xg with o' a
i positive integer. Thus the GPM could be taken as a three parameter estimation
problem of N, @, and & or a two parameter problem if & is specified. The report
noted problems with lack of convergence, convergence to nonoptimal solutions, and
m lack of uniqueness for the estimates. The report noted that the MLEs had a

greater tendency to these problems than the least squares. Both procedures were
. dependent upon a '"good" initiai starting value for the estimates in order to
Eﬁ achieve convergence. Other problems with the estimation procedures included ob-
¥ taining solutions which violated model assumptions and oscillation of the esti-
mates in the convergence process.

4.2.6 Geometric Model. This model was proposed by Moranda (References 41 and 42)
” and is a variation of the Jelinski-Moranda '"De-Eutrophication" Model. It is an

interesting model because, unlike all of the previous models discussed, it does
not assume a fixed finite number of errors in the program, nor does it assume the
errors are equally likely to occur. It assumes that as debugging progresses, the
exrors become harder to detect. By operating on the premise that a program is
never completely error free (because of error introduction in the process of cor-
recting a detected error), this model can be utilized for error amalysis. The
ii specific model assumptions are:

[ e 204
wiazal

Model Assumptipns

Eﬁ (a) There is an infinite number of total errors (i.e., the program is never
£ error free),

(b) All errors do not have the same chance of detection,

(¢) The detections of errors are independent,

tﬁ (d) The software is operated in a similar manner as the anticipated opera-
o tional usagé, and
- (e) The error detection rate forms a geometric progression and is constant l;;
0 between error occurrences. : Mt
i From these assumptions, the hazard rate for this model is of the form R0
boa %]
a - 4\"'1
Z(t) = pp*~? (4.262) —
A
&y Y
E; for any time t between the occurreace of the (i - 1)st error and the ith. The AN

hazard rate function is initially a constant D which decreases in a geometric
progression (0 < ¢ <1) as error detection occurs. Figure 4-3 is a graphic repre-
seatation of this hazard rate function.

CRE R R ML L
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I - o(1-9%)

" TIME

N

FIGURE 4-3. GEOMETRIC "DE~EUTROPHICATION" PROCESS
R B M . o N ’
Notice from the graph the ratlo of the change in.the error detectxon rate,
Z(t), from the discovery of the ith error to the (i + 1)st, i.e., .

i-1  i-2

Change in Z(t) on the discovery of the ith error\ - D¢ - D¢
Change in Z(t) on the discovery of the (i+l1)st erxor D¢i-D¢i'1
= % >1 . SRR T (4.263)

Thus the size of the step gets smaller as errors are discovered. This means that
latter errors are more difficult to find and do not have as dramatic effect on
lowering the 2rror rate as earlier detected ones.

Again, if Xi =t ti-l is the time of discovery between the ith and (i -
1)st error, then using assumptions (c) and (e), the Xi's are assumed independent
exponentials with rate Z(t, ), i.e.,

. : 'l }E =

£(X,) = Do lexp {-Da Ty L (4.264)

The likelihood function for the Xi's is then:

- T | N -1 §
LX1,...,X )= N £(X,) = M ¢ exp {-D D ¢ *7'X,} . (4.265) N
n . 1 . S 1
i=l i=] i=1
B
4=52
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Thus,thg log_of:the likelihood function is:

2oL = nfaD + ): (1-1)£n¢ - D Z ¢1'
i= =1

(4.266)

- The MLEs of D and ¢ are obtalned as the solutions to the following pair of equa-

tlons.
" . ’5%L‘ = ); o 1x =0 : (4.267)
& | =
. and
H"’?) aan n i = n 1-2 .
% RS - 2 =D ) (i- 1)K, =0. (4.268)
% & = =1 '

- - Estimates - Maximum Likelihood
- That is:
1\ A
Lﬁ N Ogn

D = (4.269)
. n
N DI

i e
o A
?E and
;i
! n o
id.X,
; G'i '

. i=1 _ nt+l -
M =5 . . (4.270)

ki
M=
-©-
Qr
=

% i3
- .
From the estimates, the MLE of the MTBF after n errors have been observed can
' be estimated as:
Fo - _ A _ 1
MIBF = E{XD‘H.} B oA (4.271)
& D %

The model cannot be used to estimate the total number of errors in the program

ﬁﬂ - but, it can be used to estimate the "purity" level after n errors are observed. Z%
ha The estimated degree of ‘"purification" for a program is usually given by the S{
ratio: b
| '...
%% 2(t)) ~ 2(t)) _nal . =
0 n_ _ D gt =1 = ¢n , (4.272)
2ce,)
-
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the change in the hazard rate function ‘from the beginning of testing to the end
versus what it was at the beg1nn1ng The estimate of this purification level is
therefore

A

PL=1-4¢3 . o O (4.273)

The large sample estimates for varlances of these estimators are derived
again using the large sample properties of the MLEs (see Patagraph 4.2.5. ).

W

Now 0
9 oL _ _n (4.274)
aD? Dz : T -
2 0 ;
9l _ - (i-2)
569D 2;% (i -1)¢ X; (4.275)
and 2
: n-2 , :
94k . -1 .5y oy ¢k, . (4.276)
992 2¢2 i= .
Hence, 2
" {f 3'2nL} . n (4.277)
ap? D2
2
E {- g$§ﬁf} 2, (i - D% K.} ) (4.278)
L i-2 1
= Z (i~ 1)¢ (— i'l) (4.279)
i=1 Né
_ 1 L . _n(n-1)
- L gga GG-1) = _£_§ﬁ$__ (4.280)
and
8 nL|_ n(n - 1) i- 1
E D - 4.281
{- 9¢2 } 292 ' ?gi i+ e { 1+2} ( )
-2 .
am-1) , p 3; 1 + D' (—iy (4.282)
242 i=1 D¢t
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_na-1) .1 [(n = 2)(@ = 1)(2n - D, (- (a - 1)] (4.283)

2¢2 0?
- n(2n - 1)(n - 1) ) (4.286)
642
Hence for large n,
A D
g = |0 (4.285)
¢G '
-is asymptotically bivariate normal with mean vector (D,¢)” and covariance matrix
n n(n - 1) %
E .~ | p? 2D
¢ \a@-1  a@-D@-1, (4.286)
s 2D¢ 2
6¢
- o= 2D2(29.:_%l ~6D
- nZn/+1 n(n + 1
Db 1242 , (4.287)
| m_%ﬁ n(n - 1)(n + 1)
i.e., - A ’
‘ A - 2A(2n -~ 1)
Cvar{D, ) 8 el (4.288)
¢ " TaeITT -
e a2 0%
varfégl * STV D ; (4.289)  F*
| e a R
s B R
-'COV(¢G’DG) A aln + 1) . (4.290) "

The estimated variances of the MIBF and PL are then obtained from:

var {MTEF} :(gg , gg) 2. (gg , gg) ’ (4.291)

)
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B

where '
. = %¢n (4.292)
and -
var {PL} ~ (g% g{;} Z (g—lf) g%) L (4.293)
5 -
where ?
£=1-0°. o T (ba29k)
These can be shown to be: 1 o
var{MIBF} = - 2(2n - 1) | - (4.295)
DZ ¢ n(n + 1) :
and ' . |
var{EL} = 1 12n-¢§n l o &' (4.296)

n-1)(m+1) °
As in previous paragraphs, using these large sample results, confidence in-
tervals can be constructed for the various parameters.
In Tal's paper (Reference 32), least squares estimates of D and ¢ are derived
from the times between error occurrences (Xi's) and the times of error occurrences
(t;'s). Specifically, for the X,'s, minimize the following: '

N A0 LA AR S AN AR I AL, /PN 0 A S5 700 AL D D it LM i
fu

k""':
g P
e
€1

)

Y
r=:

s SR B BE O &Z O EES

£ - 1) | |
S1(D,9) = X, = —— :
=1\t pet! , (4.297) m o
Taking the partial derivatives of S§; with respect to D and ¢, these are obtained: » 7
:;: v‘:
i b & 1 (6.298) R
= = 2 —_— - - .298 Z
oD 21 2! & D3¢2(1 D 0 B
. o7 L
and l.': ;f;
9S4 n X.(i-1) n , v ?é
s - g — - S (4.299) %3 f
i=1 D¢ i=1 D2%¢ F
A
4-56 h
ol
. St
b
e e L e T e e e AN N Tt T N A L VI A T A
S NN A ’fff:Ie:::-:‘.:’i‘..*'f"'ﬂ:'.:::.;Xﬁ_s\:\'?:‘-::'.::.'?;Q:'Ek:s.\'i\"f!\ﬂ"’y‘:\"ﬁ.\.°.a‘~'~'\';..‘5::'.‘n"-'_{;'-‘~"“é ;):'\' e o VAN N ‘.\{.'*..":ih";;“.‘-'i‘.7;7.:‘




Clo' ~os
— A
]

3
s

S g

NSWC TR 82-171

o

APk
Z =
;J_}'.';

i ! The least squares estimates are therefore the solutions of the pair of equations:
i% Estimates - Least Squares
s n 1
q1 N :E; ‘ N 2(i-1) :
o - i= LS,G '
D = 2 (4.300)
IQ LS,6 X - ,
A i
v =1 gi-1
D 1,6
L O and

RN
fis]
bad
7~~~
P
'
fa]
p
|=3

W ' i X, n .

b 1 L i i (i - 1)

b ~50-1) 2 G 2 D) 2 ~3 a1 0

M - i-1 &= i-1 - i-1 = 2(i-1

- =1 0g.6 =1 g6 =l 656 /W 56 (4.301)

,'1 - The least squares estimates based upon the times of occurrences are obtained by
) i'. minimizing:
A I ! _ o
& i o i AL |
i=1 j=1 D¢
{; Again taking the partial derivatives of Sp with 'respect to D and ¢, the least

squares estimates are obtained as the solutions to the following equations:

4 i Be(d )-8 (8 L)

0
- j=1 o Py J
=g e/ 1O\ 456 (4.303)

n i . n i -/ . il

2 i=1 j=1 J =1 \§31 g 0270 \i=t D 0 R

LS,G’LS,6 J Ls,6%18,6/ \J Ls,c%Ls, 6 26k
F% (4.304) 414
Wi ]

L
C, = 9, wmimm (4.305)
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i S |
y -1 : (4.306)
=1 ¢ ig ¢

o
[T
il

the lsast squares estimates are the solutions of:

Estimates - Least Squares

N n n

Pis,6 i‘z;l b B - g_;l ;B =0 (4.307)
and

n ‘n .

Dis,6 ; 8¢ - 2 Gf=0 . (4.308)

Using the results of Paragraph 4.2.3, the asymptotic variances of these vari-
ous estimates can be established. For large n, the estimates have a covariance

matrix of the form:

n g agi'z n og. 8.
— 2 1) [ L
1 z E oi. (61>92) <361> ig]_ Ui (61 ’02) (ael 362

= i=1
A2 1y o
n 9g.\/9¢. n 9g.\2 J (4.309)
2 -1 2 i
i;l Ui (61,02) <§ﬁ><392) izr;l Ui (91162)<§6—2
where 0 ) )
n [9g. n og. n [9g.\ {9s.
A= Y <__;) 3 <__l> -3 (;_l) <__£ (4.310)
=\ &\, £ \58,/ \35,
and |
n (9g.\?2 n  dg, dg,
Plu) - mm
i=1 2 i=1 1 2
2, - . (4.311)
B IR S 6ei>2
=199 9% & \9%
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For the estimates based upon the Xi's,

9g. og.
i i 1
—_— 2 = = e 4,312
58, 5D D2pi-1 ( )
and
9g. og. .
i i (i - 1)
i - Gi_ . , .31
90, EY) Dot (4.313)
since
8 (81,82) =g (0,0) = —j7 . (4.314)
D¢
Also it is seen that,
2 = = 1 ;
03 (61,02) = var{Xi} = BE;;({:TY . (4.315)
For the estimates based upon the ti's,
dg. og. i
i i 1 1
S~ = - T = — —_— 4,316
58, 5D 02 ng R ( )
og. og. i - .
R D> G-1) (4.317)
2 j=1 D¢J
with
Lo
8 = L —o (4.318)
j=1 D¢’
and
0 ‘ i i
o, (61,87) = var{ti} = var Z;Xj = 2; var{Xj}
J=1 j=1
D (
- _ 4.319)
i=1 D2¢2 j-1

The only data required to implement this model are:

Data Requirement

¢ . . .i_'u.‘
Either the times of error occurrences, ti's, or the time between error occur- e
rences, Xi‘s. o
4-59 e
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4.2.6.1 Modified Geometric "De-Eutrophication" Model. The only extension
of the Geometric Model that is considered is due to Lipow3® and discussed in
Sukert.1? The extension is made to relax the assumption of an infinite number of
errors teing preser* in the code. The model assumptions are:

Model Assumptions

(a) All errors do not have the same chance of detection,

(b) The detections of errors are independent,

\
(¢) The software ic operated in a similar manner as the anticipated opera-
" tional usage, and ' :

(d) The error detection rate during the ith time interval of testing is:

for ;4 St <t (4.320)

- 1

rZ(t)‘“ Do i1
= D¢

N

where D and 0 < ¢ < 1 ar2 as in the previous paragraph and;ni_1 is the cumulative

nunbev of er ors found up to the ith interval of testing. Th: form that this
hazard rate f uction takes is given in Figure 4-4.
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G .
: The development of the MLEs for ¢ and D proceeds in essentially the same
manner as for the Geometric Model. The resulting estimates are obtained as the
= solutions of the following pair of equations:
& Estimates - Maximum Likelihood
Vg D =I n
v ;M6 m o, (4.321)
S - L tyg X
; & MG i
») w3 o S
g i
ae by and
i:f F::; - 1 m A m A ni-l-l
HoK ‘ R Z; 0,y = Dy Z; n,_; Oy X, (4.322)
- ¢MG i=l i=1

|
i S

where m is the number of testing intervals of each length Xi, i=1,...,m and

4
]
PR o) . - . .
o Fi n =) n, is the total number of errors discovered. Notice that the hazard rate
Mo : ,
Y &
ﬁ; function and the estimates become tlLose of the previous section when n,_ , = i-1.

The MLEs of the MTBF and the reliability of the program after m intervals of

- IRE
_ 4%

testing are: -

0 Eﬂ p

Wy ‘.\‘,,' v ~ A N

e W ' 1iabili = : = - m (

B Reliability Rt) Xp DMG ¢MG ty tm<t | (4.323)
. Fﬁ and

‘::: MTBF = ;——%——n—' . (4.324)
ook m

S e

5w

S The estimated degree of '"purification" for a propram is obtained as in the pre-
m vious paragraph as:

E:‘?;; ‘3“: A A A nm A nm

e 1 . 2(t,) - 2(t,) Dys ~ Dydug: = 1 - Oyg - (4.325)
*ﬁ PL = x
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&
Ao The large sample covariance matrix of the MLEs of D and ¢ can be shown, following
Ma the same procedurc as employed in the previous paragraph, to be:
3 .
Y B _oi=1 i-1 ‘ i
£ D Oy D 8
ﬁ . MG MG "MG (4.326)
s X : K a
S Z s m m &
o ~He n 20
A 2 G
ﬂ e Pye LT ‘
R.'d‘ U‘
e with ’ [J
o n_ & > ’ ~ i
o A= oS 3omd - - 3
Vs D2 92, i= s (4.327) L
MG™MG 6. D .
MG MG . ‘
and ‘ ‘ : ' ??
, A | | B
Sy = (¢MG’ Dyg) (4.328) ;
[ i.
The estimated variances of the other estimates can be found by pte- and post-mul-
tiplying the covariance matrix ~ by . ¥
g -
of of

59 56, , where f is any of the following functions

n | o Ea
exp{-D ) mt} , (4.329)

£(D,9) =

1 4

£(D,4) = —¢ , (4.330) -~

Dp " .

or N
rlm RN
£(D,0) =1 - ¢ . (4.331) E;:
N o
The data required for implementation of this model are: 2 ‘ifu
at Yy
5
WL ..!i‘:“
‘.ﬁi i
Data Requirements e
[ SR A
\ 4 P__ d
» ' » T bt ¥os L
(a) The length of the testing intervals, X, i=1,...,m, and S

i ‘
b d
(b) The number of errors detected in each interval. [ Y Lk;;
[d e
td If“ M
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4.2.7 Geometric Poisson Model

This modél was also propused by Moranda! as an alternative to the Geometric
Model if the reportlng of the software error detect10n° is on a periodic basis.
As in the previous Modified Geometric Model, only the numbers of error occurr-
ences per testing interval are needed. Unlike the previous model, however,
the 'testing intervals are all assumed to be the same length; e.g., a testing
period is composed of a day, week, etc. Additionally, since the model assumes a
constant rate of error occurrence during a time period, the model is best applied
to situations in which the length of the reporting period is small in relation-
ship to the overall length of the testing time. The model assumptions are:

Model Assumptions

(a) There is a nonfinite number of errors.
(b} The detections of errors are independent.
(c) The errors do not.have the same chance of detection.

(d) The software. is operated 1n a sxmllar manner as the anticipated opera-
tional usage.

(e) During the ith time period, the number of errors detected f., during

that perlod follows a Poisson distribution with paraméter D¢ where D is the
initial detection rate and ¢ is the constant of proportionality where 0 < ¢ < 1.

(f) Each error discovered is either corrected or not counted again.

From assumption (e), the detection rate follows a geometric progressioa from

.one testing period to the next. Initially, the detection rate is - constant D.

After the first reporting period, the detection rate is assumed proportional to

the initial rate, i.e., it is then ¢D, and so on. The hazard rate for this
model is:

2(t) = ppt~l (4.332)

for tiq <t < t, during the ith time period. Notice how this compares to the
hazard rate functions for the Geometric and Modified Geometric Models. Here the
ti's are fixed, while for the Geometric they were random.

Since the number of error detections in a reporting period follows a Poisson
distribution, the likelihood function for the m reporting periods is:

m i-1 -11
Weryeongy) = M D¢ ) fefg{ - Dp! : (4.333)

4-63

s T o .,*.,-\,-.

v. . o, .- “.‘u --ﬂ l tr ;\"I~-: N ..~>- ¥
A _',4 .P'.F» \34" ‘7'«“ J"hh":"-‘u WL Ta T ‘v{' n‘h ..’(‘..hu" J'h&.l i:i@i&‘.ﬂm a;ilﬂ ;&x., o~ T




e ool

FRNCARY S L e
RO a2
PR,

L

v

"¢
Bl

g

1=

o b X

At e
R R AR A

.
.

R R R L IR O O e R L R T, L i, A L ™ e T Tt

NSWC TR 82~171

(4.335)

Thus
m
oL = £.00D + Zf (i - 1) %np + 2 ~fn(f, 1) - Z pet-l . (4.334)
1= =) i=1 o
Hence,
. m
atnL  _ & £ 2’5 R
oD D &
and
1]

~ f. (i m .
aggL = i=1] 1 - D Z (i - 1)¢1 2 .
) i=1 :

(4.336)

The MLEs are then obtained as the solutions to the following pair of equations:

Estimates = Maximum Likelihood

m
£,
R C S
GP - m A._l
Y dcp
&1
and n
Z f Ai=-1
=t 2 % (1 - "’GP ) (1 ¢GP2
m -1 a4, N m+1 v m
LE G- 1) y o ¢GP t(n-1) ¢ g “mdgp
i=1 i=1

using the fact that ¢1 forms a geometric progession, so that

m m-1 . m

i-1 - 1 - 9
2 ¢ PR

and
ii iot = o %31 o™l = 601 + (m - 1)¢® - m™ 1) .
i=1 i=0 (- ¢)2
4-64
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2 Large sample variances of these estimates can be calculated in the usual way
! "and are found tc be:
Eﬂ . DGP m-1 . it1 m .
W varlD —r 2: id + 2: (i -1)E -2 R (4.341)
G 3 = GP = GP
A¢EP i=0 i=1
AR
k% 3 i-1
i{,‘i' m"- -~ ._:‘1 ¢GP
i N var{ ¢ b ~ 22 , (4.342)
Pl A GP[ ~ AD
GP
and
m=-1
- . hi=1
> o 1 %p
cov(¢GP,DGP) ey N (4.343)
where
m*&i-l m=l “itl m - mel  a g\
& Yep .Zi¢GP 2 -G -] - {2 i :
A = —-x;——'— i=0 i=1 i=o g
¢ RN
gp (4.344) i
3%
The least squares estimates are obtained by minimizing: f?yj
e
3 i-1,2 o
$(9,0) = 2 (£, ~ D¢ ) . (4.345) N
=1 NN
Taking partial derivatives and setting them equal to zero, the least squares esti- ;ﬁﬁ
mates are obtained as the solutions of: e

Estimates - Least Squares

| g oic gl )
. & Tidep,Ls S TiYeRIs AL - e gg)
Dep,us = = m M ; Tt (4.346)

' §§¢ 2(i-1) {19201
&7 op,Ls \ GP, LS,
and
fﬁ G =D ot - D S (i - ne2l= o (4.347)
~ i %ep,L8 GP,L§ et GP,LS : :
i=l i=1
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Large sample variances can be developed for these estimates as done in pre-
vious paragraphs. The estimate of the expected number of error detections in the
(m + 1)st time interval is established as either:

the testing progresses over time, the error detection process changes and hence,
recent error counts are usually of more use than earlier counts in predicting
future error counts. Three approaches are employed in utilizing the error count
data. Suppose thexe are m intervals of testing and f errors were defected in
the ith interval, one of the following can be done.

Expected Numﬁér of Errors in Interval m+l = BGP$2P | (4.348)
. | or | |
; Dop,1s%Gp,15. (4.349)
y 4.2.8 Schneidewind's Model
Eé% 'Normgn Schneidewindf3 proposed a gene;alizgd model whic@ includeg the Ge&-
EQ metric Poisson as a special case. The basic philosophy of this model is that as

.
%

aZa
L
o1

LA
DRt

(a) Utilize all of the error counts for the m intervals.

(b) Ignore the error counts completely from the first s - 1 time intcrvals
(2 < s <m), and only use the data from intervals s through m.

(¢) Use the cumulative error count from intervals 1 through s - 1,-i.e.,
s~1
F. 1% )D f, and the individual errors counts from interval s through m.
i=1

Schneidewind argues that approach number 1 is applicable when one feels that the
error counts from all of the intervals are useful in predicting future counts.
Approach number 2 is to be used when it is felt that a significant change in the
error detection process has occurred and thus only the last m - 8 + 1 intervals
are useful in future error prediction. The last approach is an intermediate one
between the two otherms, Here it is felt that the combined error count from the
first s - 1 intervals and the individual counts from the remaining are representa-
tive of the error detection behavior for future testing intervals. The model
assumptions are:

Model Assumptions

(a) The number of errors detected in one interval is independent of the
error count in another.

(b) The error correction rate is proportional to the number of errors to be
corrected. ' '
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(c) The software is operated in a similar manner as the anticipated opera-
tional usage.

(d) The mean number of detected errors decreases from one interval to the
next.

(e) The intervals are all of the same length.
(f) The rate of error detection is proportional to the number of errors
within the program at the time of test. The error detection process is assumed to

be a nonhomogeneous Poisson process with an exponentially decreasing error detec-
tion rate. The rate of change is taken to be of the form

d; = dexp {-Bi} (4.350)
for the ith interval where & > o and B > o are the constants of the model.
From assumption (f), the cumulative mean number of errors is therefore
o

D, = B [1 - exp{-Bi}] , (4.351)

so that for the ith interval, the mean number of errors is
m =D, -D, ;= % lexp(=B(i = 1)) =~ exp(-pi)]. (4.352)

1 1 1

The likelihood function, assuming a Poisson process, is then developed as

Fs-l £
‘ M. q exp{-Ms_J‘ m m, “exp {-mi}
L(fl,...,tm) = 1 1! T (4.353)
s-1 i=s i

where M _, is the mean number of errors in the intexval 1 through s-1 with s

chosen as an integsr value in the range 2 < s < m.

Using the fact that:

moo= % [exp(-B(i - 1)) - exp(~Pi)]
= § ew(-pl - DI1 - exp(-)] (4.354)
and o
Moy = B [exp(0) - exp(-(s - 1)B)]
= % (1 - exp(-(s - )BT , (4.355)
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Gephart et.al.l® established that the MLEs for o and B are then obtained as:

'
Ry 2l
0

2

PV
=

o w -
Sl 3 <=

Estimates - Maximum Likelihood (Approach c)

\J‘n
.';".:c! ~
N B, = nn(y) (4.356)
'r!"f and .
g s 5= ~ (4.357)
e 1 - exp {-ﬁm}
)
Qf where y is the solution of the polynomial equation,
(s - 1)Fs-l Fs m mFm (4 )
— + : - - A o358
s 1_1 y-1 ym -1
which can be simplified to:
s+m s+m-1 m+1
Ay (A + Fs,m)y (A + st_l Fs_l)y
m 8
*A+F o+ sF - F )y - (A-nF)y +
s-1 .
(A + Fs,m mFm)y A Sks-l mFm Fs-l)y
(A + sFS_1 + Fs,m - mFm - Fs-l) =0 fory>1 (4.359)
with
m-s
A= 1}__‘, (s +i- 1., (4.360)
m
.z Fs’m = i}__;s £, . (4,361)

*

+
v
]
4
i
.

_ m
If s is set to 1 and F =F = E:fi , then the polynomial in equation

s,m mo &
(4.358) gives:
Fm - lnFm
}:—1— ym-l = A. (4.362)
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This simplifies to: A

™ Ayl - A+ F Y+ E - Ayt A+ -uF) =0, (4.363)

- A

ga for vy > 1.
" The MLEs derived under these conditions are for approach (a) where all error count
data are used.

) In equation (4.363), if m - s + 1 is substituted for m and the subscript of

[ the f.'s is modified in the expression for the summations to make f the first

[

o error count, the MLEs for approach (b) are obtained where the first s - 1 error

. counts are ignored. For this case, the MLEs are:

t?:f B, = 2n(y) (4.364)

{3, and

el m A

- ééé fi) P

o o, = n (4.365)

) 1 - exp{-pm}

t:

i where y is the solution of the equation

X m-s+2 m-s+1

. Ay - (A+ Fs’m)y + ((m - s + 1)14"5,m - Ay

. + - - = .36

P:: (A + Fs,m (m -5 + I)Fs,m) 0 (4.366)

* for y > 1 where

F@ n-s

o A= 2; if .. (4.367)

i=0

;Q From the MLEs, various other parameters can be estimated as seen in the following.

- Expected Number of Errors in the (m + 1)st interval of testing

Ny

=m,; =g lexp{-pi} - exp{-B(i + D} ; (4.368)

Lo

b

2 Time to detect a total number of M errors

{c = log fa/(a - BM)]/B ; (4.369)
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e

: and

%2 the correction rate for the ith interval

oo = aexp {-B(i - A} ; ' - (4.370)

where Ai is the lag time between the detection of errors and their correction,
i.e, the time to correct Di - Ci errors where Ci is the cumulative number of

errors corrected up through the ith interval.

All of these pérameters are estimated by substituting the appropriate MLEs
for ¢ and B. If the lag Ai is unknown, it can be estimated by finding a value
for Ai such that - '

c, =D ,i> A, - (4.371)

i-Ai

using the empirical data.

If approach (b) or (c) is used, a determination for s needs to be made.
Schneidewind suggests letting s = 2,...,m and finding the MLEs for each value of
s. For each pair of estimates, the computed sum of weighted squared deviations
between th: error estimates m, and the observed counts £, for all i is computed

and the one yielding the smallest sum is the chosen s. The weighted sum is given
as: ‘

m , 2
SDW = 3 exp(Bi) {% exp(-Bii}{éxp(B) - 1} S 7 (4.372)

=1

Schneidewind also suggests that to decide among which of the three approaches to
use [(a), (b), or (c)], the unweighted sum of squares

2

M
sou = ) [% exp(-pi) {exp(B) - 1} -f%] (4.373)

i=mtl

is computed for each approach (i.e., & and P are replaced by their estimates for
the respective model). M is some specified future time. The unweighted sum of
squares is calculated between the observed counts and the expected counts over the
next M - m intervals. The approach yielding the smailest sum and hence, yielding
tne smallest differences between predicted and actual values is the one chosen.

T
Slale

Gephart et.al.l® show that the models under approaches (a) and (c¢) (with
s = 2) are equivalent to the Geometric Poisson of Paragraph 4.2.7. If

-
.
v A

¥

T

g = 9§:§_%l (4.374) )
!
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and
B = '_2n¢ , (4.375)
and these are substituted into Schneidewind's Model, it becomes the Geometric

Poisson Model where D and ¢ are the parameters of that model. In an equivalent
manner, if

D = % [1- e P (4.376)
and
o = P , : (4.377)

and they are substituted into the Geometric Poisson, it becomes Schneidewind's
Model.

The data required to implement any one of three models are:

Data’ Requirement

The error counts for each of the m intervals of testing.

4.2.9 Nonhomogeneous Poisson Process

The Nonhomogeneous Poisson Process (NHPP) Model was proposed by Amrit Goel
and Kazu Okumoto (References 44, 45, and 46). Following other models that have
been considered (see Paragraphs 4.2.3.2, 4.2.5, 4.2.7, and 4.2.8), this model as-
sumes that the error counts over nonoverlapping time intervals follow a Poisson
distribution. The expected number of errors for the Poisson process in an
interval of time is assumed proportional to the remaining number of errors in the
program at that time. Specifically, the model assumptions are as seen in the
following.

Model Assumptions

(a) The software is operated in a similar manner as the anticipated opera-
tional usage.

(b) The numbers of errors, (fl,fz,...,fm), detected in each of the respec-
tive time intervals [(0,t1),(t1,t2),(t2,t3),...,(ti_l,ti),...,(t tm)] are inde-
pendent for any finicve collection of times t; < tg <”"’<tm‘

m~1’

(c) Every error has the same chance of being detected and is of the same
severity as any other error.

4-71
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ﬁf{ (d) The cumulative number of errors detected at any time t, (N(t)), fol-
lows a Poisson distribution with mean m(t). The mean m(t) is such that the ex-
pected number of error occurrences for any time (t,t + At) is proportional to the

;§; expected number of undetected errors at time t.
%g (e) The expected cumulative number of errors function, m(t), is assumed to
Kt be a bounded, nondecreasing function of t with

m(t) = 0 t=0

m(t) = a £

where a is the expected total number of errors to be eventually detected in the
testing process.

Note that fi = N(ti) - N(ti_l). The NHPP differs from some of the other

Poisson Models considered in that this model treats the initial error content of
a program as a random variable while some of the others assume it is a fixed
constant. Also the time between the (i - 1)st failure and the ith failure de-
pends upon the time to failure of the (i - 1)st rather than being independent
of it.

From assumptions (d) and (e), for any time period (t,t + At)

m(t + At) - m(t) = b{a ~ m(t)}At + O(At) (4.377)

whewe b is the constant of proportionality and 9%%51 > 0 as At » 0, By letting

At » 0, the mean function satisfies the differential equation

m (t) = ab - bm(t). (4.379)
Under the initial condition m(0) = O, tﬁe‘mean function is

m(t) = a(1 - e°%) | (4.380)
Thus,

Pri{N(t) = n} = jm(t)]z?‘m(t)
with

m(t) = a(1 - e P%) . (4.381)

For fi = N(ti) - N(ti—1> and the error counts being independent, the likelihood

function is therefore:

v oy

£, r': . '...-."

m [m(t,) - mt, )] expi{m(t,_.) - m(t.)} iy

L(fy,...,£) = G L i-1 i-1 1 (4.382) L
m PR f ] ’ . 1.0
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o
=
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]
=2
ct
[
!
o
ct
[
| )
[y
|\
A

2 m -bti_1 -bti
o 2nL(f1,”.,fm) = E: f, 2na + 2: i Qn(e -e )
R i=1 i=l
K &; m  -bt, -bt

™Mz

te +a) (e t-e h - ¥ ey .

1

_o~EER
[ R
t
—
H-
il

.. Thus,

o

RN VI
Q@
L]
]

M=
[ 7Y
F.
1
(=2
(ad

R agnL i=1
a

! ﬁ; and
Lo -bt, -bt,
I f, t.e t.pe 1 -bt

m i Y i
Z; -at e m .
i=1 m

- IBY

.
¥

L” Thus, the MLEs are the solutions to the following system of equations:

A

N
.
E 3

Moy Estimates - Maximum Likelihood

o m
30 S £

1) N i=1_

g CNHPP T () _ o ~Dyyppty

;; I“ and . n

Eﬁ - b b ot b ting

- t m i i
e NHPP "m Zfi £ ., NHPP ;¢ NHPP

A m < m i
::\ F\. - 1= = Z x

b (1-e ~PNHPP'm) =1 o ~byyppti-1 - e Pmppti
E

»

>

T
-
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il The expected number of error detections in the next (m + 1)st interval of

g testing is then estimated to be:’ '

':::: A A -~ "i; t "b t

el _ _ NHPP 'm _ NHPP "'m+1 8

?4 m(tm+1) m(tm) = ayupple e . (4.389) g‘
& As has been done in previous paragraphs, the least squares estimates of a

i and b are derived by minimizing: -
3 i
E:*Z’ m (W
Lo - < - - 2

& § = ); (£, = [m(t) - m(z,_)13 (4.390) -
¢ i=l t}
% <
h m -bt. 4 -bt,

£ = {£, - [a (e - e )} E L (4.391) &
N 1=1 R
Li'i ol
i

%@ Thus, . -

m -bt, _ “bt, -bt, _ -bt, fee
B oz T, -late oo Hy -l gt (4.392) X
a 4 1 Y &
i=1 . [“- -
SR
and h
b - H
-bt, -bt, -bt, -bt, ., 3
98 0 i-1 i i i-1
= -2 {£f. - [a(e - e )ila (t.e -t, _,e Y13,
ob 55% i i i-1 (4.393)

The least squares estimates are therefore the solutions of this pair of equations:

o

Estimates - Least Squares

T

)

T f
£ (e NHPP,LS%i-1 _ _"°NHPP,LS"i
. (4.394) b

Pwmpe,Lsti-1 _Pwmee,1s%i

- ‘.'-‘

3NHPP, LS

>
=
™M=| 1Ms

1

v
It

b=74
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1

A

~b,

A

t, -b, t -b t -b
NHPP,LS"i-1 _ "PNHPP,LS i-l) (tie NHPP,LS% i _ boge NHPP,Lsti-Q] _

e

= Aynpp,Ls 12':;1 [(" (4.395)

ot ¢
A"

: e e a
¥,
T A

. In the report by Schafer33, the large sample variances and covariances are
}: derived for the MLEs and the least squares estimates.* Provided a is large, the
: variances and the covariances of the MLEs are: ‘

A ” m (t., -t )2exp(-£(t. +t, .)) -bt
~a Z: i 1-1 i i-177 _ .2 m
e 11 _ 771

e

Bl

var{b}NHPP (4.397)

" ~ 1 I m
Cov(aNHPP’bNHPP) ~ 3 (-t e ), (4.398)

N -b(ti + ti-l) - A
-bt mo(t -t )% , bt} -2ty
A= (i-e ) 5;% -gt A:Bt - the - tpe (4.399)
e 171 _ U

For the least squares estimates, the large sample variances and covariances are
given in the covariance matrix:

ZA .1 Z A 321

GNHPP,LS ~ Z; i B c (4.400)

* The author would like to express his thanks to Mr. Vijaya K. Srivastava who
pointed out the errors in the original forwulas and provided the correct ones.
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‘ where ﬁ
E::: A o

~ a
& P NHPP, LS (4.401) o

e -e , (4.402) NN

e -e t,e -t , (4.403) B

(@]
i
.MB
-]
(]

e , (4.404) Q

and

.
P 2SSy
o _ £ 4

. -bt bt e g -bt bty /bty bty B
Z: a\t,e - tye - g a\t;e -t e -e ".
i=1 i=1 - b

Je iy

(=Y
R I
X,
L}

. -bt, bt \ [ bty bty bt b,z B np
-3 a\te "t e -e ﬂ e -e G g
i=1 1 1= i=1 LA

.
e

(4.406) U

-.ﬂ_
F%
L E"'{"

PO LRl

This large sample result is derived utilizing the results of Paragraph 4.2.3
with: o

T LS F

i
i-1 i Ea
g =a \e -e (4.407) [t
1 rey el
&3’ !
and 'bt 'bt ' P‘-—r—"ﬂ

02 =a (e -e . (4.408) W e
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N Equations (4.396 through 4.406) can then be used to construct large sample
H ’H confidence intervals for the parameters by replacing any unknown in the variances
2 v with their respective estimates.
i Goel and Okumoto*4 derive MLEs for a and b based upon the individual times of
Q &} error occurrences. If Si represents the failure time of the ith error, they show
i in their report that the MLEs are the solutions to the following system of equa-
. tions:
O A
ago = L. (4.409)
F: 1 - exp(-bGosn)
o and
fan
i ~ = 3 5, + ; s _exp (- B ) (4.410)
oy 5g T 3605a®*P 1"Pg0%n :
b, k=1
i %0
e where n is the total number of errors detected.
e Using this forrulation, Goel and Okumoto establish that if S = 5 is the time NS
Li of the last failure, then the conditional reliability function of X (the time F};ﬁ
between the nth and (n + 1)st failures) is given by: g{ﬁ{ﬁ
o : Ok,
. t-‘H\‘J
i (x |S.=58) =P {X > x |S_ = s} (4.411) E
Rxn+1 . l n n+l - I n e
FE = P {software is operational for at least x amount
. of time given s amount of testing} (4.412)
exp [-a{e-bs - e-b(5+x)}] . (4.413)

N o
"

Okumoto and Goel45 utilize this reliability to determine an optimal release

. time for a software program. Testing can continue until the desired reliability

p‘ R = Ry (x |Sn = g) is achieved for a specified operational time of x or the
ntl

required testing time s can be determined for a desired reliability for a speci-

fa fied operational time. If
o
R = exp[-a{e'bs - e-b(s+x)}] (4.414)
('-.'
-b
e = exp[-m(x)e "] (4.415)
r.ﬁ-j with
B - -bx
. m(&) =a(l-e ) (4.416)

g
.
-

then the desired testing time to achieve the specified R and x is:

-1 [zn(m(x)) - (211 (nn (%)»] | (4.417)

.

N

L

0l
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Estimates based upon previous testing data are used for a and b. s

In their paper, Okumoto and Goel also determine an optimum release time based
upon cost considerations. Suppose:

C; = cost of fixing an error during testing, ]

C = cost of fixing an err.r during operational use (Cz > Cq), FR

Cg = cost of testing per unit time, i

t = software life cycle length, and E%

T = goftware release time for testing. ‘;
Since m(t) is the cumulative expected number of errors in the interval (0,t), £hen Eﬂ
the total expected cost is:

C(T) = Cam(T) + Cz [m(t) - m(T)] + CoT. (4.418) ¥

Differentiating the expression with respect to T, then

ey Al

C’(T) = Cym“(T) = Cam™(T) + C3 (4.419) :
where ﬁ

m’(T) = abe T . | (4.420)
Setting the right-hand side of this equation equal to zero, the following is @
obtained:

abe PT = a;Eg—ET . (4.421) 53

Fe T
RS

Okumoto and Goel establish in their paper (Reference 45) that:

Cs
(a) 1f ab > PR then there exists a unique feasible solution to equa- Ea
2
tion (4.421) and the optimum release time is:
T* = min{To,t} (4.422)
where )
ab (Cz -C 1
=1 .
To = b 2n Cs (4.423)
while
Cs
(b) If ab { —— (4.424)
Cz - C1
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then
T* = 0. (4.425)

The last comment concerning this model is that if the testing intervals are
all oi the same length, say T, then this model is equivalent to the Geometric-

E L{ Poisson Model and hence, Schneidewind's Model with s = 1 of Paragraphs 4.2.7 and
" 4.2.8 respectively. If all of the testing intervals are of the same length, then
. the time of the ending of the ith testing interval is L, = iT. The joint density
3 t& of the f 's then becomes:
§ f' m [m(t ) - m(t )]fiexp {m(* ) - m(t )}
e £(£1,...,£) = T 1 1-17) i-1 1 (4.426)
. m . f.!
i=1 i
oo -bt, _ -bt, ]f. { -bt, -bt._p}
E: ?, : ﬁ [E(e i-1 _ e 1)7 Loxp a(e i_, i (4.427)
9 {5 i=1 !
_ _m [ae-bCi-DT _ e-biTi] explale-i®T - e-b(i-l)T)}
;i i=1 ! (4.428)
) - ﬁ [a(l-e.b'li)e-b(l-l)'l] exp l:-a(l - e'bT)e-b(i-l)ﬂ
i i-1 ;! (4.429)
; Notice that if:
(4.430)
P] and
X b - _z; !
rn (4.431)
W where D and 9 are defined in Paragraph 4.2.7, then the joint density function
‘ becomes:
]
Lﬁ m [ﬁ 1-1] £ { i:}}
n e 1 exp D0 J, (4.432)
i=1 i

the Geometric Poisson. Likewise, since the Geometric Poisson and Schneidewind's

= Model with s = 1 are equivalent, utilizing the relationships established between ~
- F» the two models in the last paragraph, T
JI _a
\ 2<58
- (4.433)
3 and
; b= g
? f T (4.434)
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are found to be the relationship between Schneidewind's and the NHPP Models.
The data required to implement this are:

Data Requirements

(a) The error counts in each of the testing intervals, (i.e., the fi's).
(b) The times the testing intervals end, (i.e., the t.'s).
(c) The time of error occurrences (i.e., the s 's) if an optimal release

time is desired.

4.2.10 Duane's Model

The next model considered also employs a nonhomogeneous P01sson¥process for
the error counts. This model was originally proposed by J. T. Duane*” as a hard-
ware reliability growth model. Duane observad that the cumulative failure rate
versus cumulative testing time when plotted on £n-2n paper tended to follow a
straight line for a number of systems developed at General Electric. This model
has been applied with some success to software reliability modeling by Evaluation
Associates, Inc., (References 48 through 50). The specific assumptions for this
model are given in the following.

Model Assumptions

(a) The software is operated in a similar manner as the anticipated opera-
tional usage,

(b) Every error has the same chance of be1ng detected and is of the same
severity as any other error,

(c) The error occurrences are independent, and

(d) The cumulative number of errors detected at any time t, [N(t)], follows
a Poisson distribution with mean m(t). The mean function is taken to be of the

form m(t) = Atﬁ.

From the assumptions, it can be seen that if

m(t) = Atp - Expected number of errors by time t (4.435)
t t total testing time

is plotted on &n - £n paper versus time, or comnversely, if

Y=028) =gn X cpmns - Do (4.436)
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is plotted on regular paper versus £n{t), a linear relationship relating the two
. is obtained. That is,

e - SREANPS

Y=a+bX (4.437)

3

lw :-n
o pa
O

with a = oA, b = f - 1, and X = £n(t) for the latter case.

The rate at which errors are occurring is:

dm(t) _ .o, B-1
4t - AP, (4.438)

Hence, the MTBF is Also

1
Aﬁtﬂ-l

if B > 1, there is no improvement in the software as time progresses. Crow®!
shows the MLEs for A and B are:

Estimates - Maximum Likelihoced

A

}\D = (4.439)

and

A LIRS

= - 4.440 g
BD n-1 ’ ( ¢ ) }:':'.:'.7
2, At /t;) G
i=1 b
ToL where the t, 's are the observed failure times and n is the number of software ,!:I
.y RES
3 i ‘ errors detected. iq
9y - AP
DU fo e,
4 t The MLE of the MTBF for the (m + 1)st error occurrence is then: ’
9 A ‘t‘ N
.: ‘.;:"‘: A A A BD‘I ‘1 tn . -
i b MTBF =[ADﬂDt ] S (4.441) !&}.
{ n LN
) nBD -'.'f“A
'\: o ‘,_'”F:
-: Q“. 51 . *..'il
L Crow®! also provides a table of e
A L ‘, ‘

S P{ MTBF/MTBF < Ca}= a (4 442) E:
o f AN
SR which can be used to construct a 100X(1 - a) percent confidence interval for the e
< MTBF. A
) S “‘--‘:'.
% Eﬁ £
g : S
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& Least squares estimates for a = £n\ and b = B - 1 for the equation b

7]

I
L

kExpected number of errors by time t\
fn ( total testing time = a + bin(t) (4.443)

i

can be achieved in the standard manner as:

Estimates - Least Squares cf_-f‘x tx
- - A - e
- - s !‘T:;‘.i
8y 1s = Y - bp ¥ (4.444) DR
and ke %:”':’
n n RN
. i§l XY, - 1.2-:1 AP IR A ” b =
D,Ls = ( . 5) . },}:‘.J
2 zn: X. \2 H [
n X¢ - . e
, =t \i=1? '
'where I
R
= S\
Xi .ln(ti) (4.446) ':!33‘,;‘1
I A
and PR E AR
Y, = zu(%—) . (4.447) =
i A
Various confidence intervals for the parameters of the linear model can be L")
constructed in the usual way. .
The only data required to implement this model are: p
Data Requirement 5y

The times of error occurrences.

e 'y
P4

4.2.11 Execution Time Model

The next model considred is one that has been applied to the greatest number fz
of software development programs. This is a model developed by John Musa of N
Bell Laboratories,5¢'53:54155:58 fThe interesting aspect of this model is that it

is based upon the amount of CPU time involved in testing rather than on calendar v
(wall clock) time; but, the model attempts to relate the two. By doing this, &
Musa is able to model the amount of limiting resources (failure identification "
personnel, failure correction personnel, and computer time) that may come into v
play during various time segments of testing. In addition, this model eliminates &5
the need for developing an e: correction model since the error correction rate :

is directly related to the ins.. taneous failure rate during testing. The spe- o

cific assumptions for this model are given in the following. ::} o

LN

4-82 o

By

=3

b

ST R AT Ay ORNERELR '\ AN '\' E A R L =

e " "'}n } ~" ' ‘ & -' “- n‘i o ' "- ~x.$\-, ". - ".-."- : LI IR o s B R TP S ° “ o
‘. - ) » ) . L - - N b Y ‘ . v . - -
(.. L o e e i Q. L Pia l‘. e d 'hn. (..._lm‘.tA)..‘ % j‘..u..l o .42.. au Q ‘ 2 ‘ LY, - a- . it . :; .“\ ...‘_‘ ‘:..'»..".‘. :& '.: .‘."l'}; .‘:'a - .}-.l._\“-:":_-\_.-.-‘:"_.-A::.i.'-A::?-‘ S .;'.'.‘.': L]




'SP T ~ Ea N S S SO . T A A O T & W -
P R A R T A B A O T T A S

>

‘e Ze

A R
A f NSWC TR 82-171
a) ul 3
A 2
a l Model Assumptions
wo- (a) The software is operated in a similar manner as the anticipated opera- .L”';
. tional usage. e
::%‘ li‘: (b) The detections of errors are independent. i,_d
' f'":‘":
% (c) All software failures are observed. B
;b f
u-{ ‘ (d) The execution times between failures are piece-wise expouentially e
:} } distributed (i.e., the hazard rate is a constant that changes only at each error RN
o f:* correction). AR

g

(e) The hazard rate is proportional to the number of errors remaining in
the program, ‘

PPN

—
s
. «

. .

(f) The fault correction rate is proportional to the failure occurrence
rate,

)

z

(g) The quantities of the resources (failure-identification personnel, fail- .
ure correction personnel, and computer times) that are available are constant over A

"% E\ a testing segment. 5:‘;1- 7

e R

W (h) Resource expenditures for the kth resource, Axk, associated with a '»jf*'ef"

% i change in MIBF from T; to Tz can be approximated by:

IJ“

. - N

;: Axk ~ ek At + My Am (4.448) o
] M oy

E{{ T.‘_-: where At is the increment of execution time, Am is the increment of failures ex- tw:\:ﬁ:

perienced, Gk is an execution time coefficient of resource expenditure, and Py h:

o s

' F is a failure coefficient of resource expenditure. E:

o (i) Failure-identification personnel can be fully utilized and computer {

) utilization is constant. fonsli

. y-o.’_r

' (j) Failure-correction personnel utilization is established by limitation ?::-::j-'

of error queue length for any dedbugger. Error queue length is determined by '[;-"--1

<l assuming that error correction is a Poisson process and that servers are randomly -

' assigned in time. e

."?-.‘-'

(et

; Assumptions (g) through (j) are needed if there is interest in modeling AN

N resource allocation for the testing segments. Only (a) through (f) are needed e

for reliability modeling. In fact, (a) through (e) are assumptions which are A

incorporated into many of the models presented in this report. Later in Para- '[-—

graph 4.2.11, an equivalence relationship between this model and the Jelinski-

Moranda Model of Paragraph 4.2.3 is established. ?5."-;?

'\';--‘

Suppose there is an initial number of N errors present in the program. [-.:.}.‘

l Suppose n errors have been corrected after t amount of testing (based upon CPU Ff%’l
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e

time) has elapsed. Then from assumption (e), the hazard rate function at time <t
is of the form: b

<

=

2

A
b Z(t) = fK(N - n) , (4.449)
i_~:‘ S, .
o where f is taken as the linear execution frequency (average instruction rate N
P divided by the number of instructions in the program) and K is an error exposure

ratio which relates error exposure frequency to linear execution frequency. The -

error expcsure ratio attempts to account for the fact that code is not executed e
in a sequential manner, due to numerous loops and branches, and for the variation !
of the machine state. The variation of the machine state may cause an error
associated with & particular instruction to be undetected nn a given execution of "
the instruction. -

I

YT
(3

-
Ol
P
..
panv

P?‘ From assumption (f), ren
s dn _ e
- It = BZ(x) , (4.450)

where B is the proportionality constant. B is called the error reduction factor. &

It is the average ratio of the rate of reduction of errors to the rate of failure

occurrence. Usually B is positive and less than 1 although there is the situation et

in which the finding of the error that led to the failure of the program leads to IR,

the discovery of additional errcrs as well. This creates a B larger than 1. :\Fq

ra) ".'-_":

Musa generalizes this relationship by considering, t} [:‘]

b"‘,_::"A

Ak

dt = BCZ(t) (40451) i:’i ,.:.ﬁ %

L" ! l';‘-

o el

where B is as before and C is a constant called the testing compression factor. wj“
1t is the average ratio of rate of detection of errors during testing to that

during use. It attempts to account for the greater stress that is placed on a R

program to uncover program errors during the testing phase in contrast to the EEAOS

operational phase. Usually C is larger than 1 because of this fact. o f{;;

Now suppose m represents the number of failures experienced in the process - fﬂ?

of correcting n errors and suppose M is the required number of failures that one f*“

needs to experience to uncover all N errors within the program. Then Eq 'Tfﬁ

n = Bm (4.452) e

(g ]

and ‘,‘,.f e

| o

N = BM . (4.453) - 0N

The previous equations can be combined to obtain: “? ::ﬁé

l.\..-\

dn AOAY

== = BCZ 4.4 T e

a7 = Bez(v) (4.454) oo

= BC{fK(N =-n)] (4.455) %
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P
-8, a

- iy B

= BCEKN - BCfKn , (4.456)

LPLPAPADN Xy
A _ 3

F; 98 + BCfKu = BCEKN (4.457)

L LA

.
z

or in terms of the m's,

LY t; dm

Bgg* B2CfKm = B2CfKM (4.458)

or

. dm

BCfKM . (4.459)

0 at ¢

Since n = m 0, equation (4.457) has the solution

IR T —
R P
B At PR
——
v e e
Tt

n =N [1 - exp(-BCfKt)] . (4.460)
and equation (4.459) has the solution

m=M[1 - exp(-BCfKT)] . (4.461)

Since the MTBF is given by:
=~ 1
MTBF = 70T (4.462)

it can be reexpressed as:

MTBF = 2%?7 (4.463)

1
= KA (4.464)

1 .
fK(N - N + N exp (~BCfKv)) ’® U581

ng equation (4.460), (4.465)

_ 1
~ fKN exp (-BCfKY) ° (4.466)

If To is the initial MTBF when testing just begins, i.e., T = 0, then

et 1 Gt
To = Initial MTBF = m (4.467) , :.:,,:-‘,1

1 e
" (4.468) -
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iy Thus, -
e MIBF = Tg exp (BCt/NTq) (4.469) 5
%

VN <
N for any testing time T. As T 2 ®, the MIBF > ® indicating the improvement in the 53

Tt software as testing proceeds.

The reliability of the program at any future time T; given testing of length
T is found from:

1558

g
SR A AL )

H

exp [-1,12(1)] |
exp [ﬁ%ﬁf]._ (4.470)

Again “t can be seen as T + ® causing both t; and MTBF » ®, R(T4) » 1 is obtained.

S
<
s &3

R(ty) = exp [~ Gid Z(t)dx]

i
4

From this basic model, Musa establishes some other useful results (Refer-
ence 52). The number of failures Am that must be detected and corrected to
achieve an increase in MIBF from T; to Tz can be shown to be:

| 947 T
[ 30”404

Am = MT, —T—l - —T-E . | S (4.471)

The additional execution time required to achieve the increase is:

MIq o (gz) o (6.472)

At C Ty

=y

T
Sl

11

For the implementation of this model for a reliability analysis, an idea
ot what the values of these various parameters are is needed. Musa suggests that
initial estimates can be obtained from other projects of a similar nature. For
some of the parameters reestimation can then be made as the testing progresses.
The error reduction factor, B, can be determined by taking data on the number of ;ﬁ
errors generated while fixing other errors. This information could be obtained Ci
from the develoupment of similar programs. Musa renorts that B is relatively
stable for ithe programs he considers; it is in the range .94 to 1.00. i

The testing compression factor C must also be obtained in a similar manner.
If there is no basis for estimation of C, a conservative approach of taking C = 1
is advised. An initial value of M can be scbtained from the relationship M = N/B E
with N being estimated from an idea of the average eriror rate for programs of a L
similar nature. Musa notes,52 from a number of other studies being observed, er-

ror rates in the range of 3.36 to 7.98 errors per thousand lines of instruction (0 Ead
with a weighted mean of 5.43 errors per thousand lines of instruction. In a later @; };ﬂ
report (Reference 55), Musa employs an estimate of 6.25 errors per thousand lines ’ sl
of instruction. The accuracy of the initial estiamtes for N and hence M do not PN,
have to be wz2ry high since as the testing progresses, they are reestimated. The 3 gg?
g
bl
Fn .
- (;.:f-.
(,'\..‘l ’:".:‘
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i

IS parameter K, the error exposure ratio, must also be estimated initially from pro-
\ h grams of a similar nature; however, like M and N, it can be reestimated as the

kel

testing progresses. Therefore, the initial accuracy for this estimate can be low

as well. Musa observes an average value of 1,31 x 10-6 for K for the various wvali-
dating projects he considered.

e
Y-,
P v

S L
-
. . .
! .5

“ For the reestimation of K and M, suppose }(1,...,)(m are the times betweca
EN error occurrences. Using assumption '(d), Musa®? establishes the MLEs for M and

To, the initial MTBF, as the solutions to the following system of equations:

»
b
v

Estimates
(2 To=CXj1-%0¢ (4.473)
) M
and
t::: A
“ A
- S S (4.474)
" M
: L3
- 4 J
. j=M-m+1
h where
o Lo 1 &
& $=—— X (i-DX (4.475)
; 2 X i=l
' and
“u
m
2 2R (4.476)
N X= =——,
m
The estimate of K is then obtain=d from the relationship:
-— ._._1.'_ - _}..__ -
t" TO ~ TKN ~ FKBM ° (4.477)

I .'i i.e. [ :
Y K= —— . (4.478) T3
5 } £BT oM o
K I'::e,”:
I If 1 amount of testing has been completed (measured in CPU), then from the results \11
b that have been established earlier: RPN

MTBF = Ty exp (Ct/MTo) (4.479)
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A
. and the estimated reliability for time T is:
R (Tl) ~ exp ('T,l/MTBF) . : : (4.480)
Approximate variances for the estimates are also given by Musa®? as:
A o T
var{lo} ~ = (4.481)
and A -
L
var{p} % - ——2 jMlem 10 (4.482)
M 2 M 2 m .
1 1
2, 5.
j=M+1l-m - j=M+1l-m -

Large sample 100X(1~a) percent confidence intervals are then constructed as:

Confidence Intervals

To =~ 2.4 ar{To} , To * Z,_, var{To} (4.483)
and 2 2
Mrowr MuppER (4.484)
where MLOW is chosen to satisfy:
] & Mrow 1 p
—_— (i - DX, = - + k yvar{p} (4.485)
ey i m M
m?’X i=1 Lo,
sl mt
and MUPPER is chosen to satisfy:
m L '
LY G-y = M”Pflm‘: -y - k\/var{m (4.486)
w?X  i=1 UPPER, , o
T e 4‘1‘
N ~ 3 Ly
;."u J= "m+1
EIZ'.: it tuppER .
K =‘ﬁ_ (4.487) @
o
N
¥
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EE

.and 2 o is taken from a normal table such that:

g
1
|

plz>z $=9%. (4.488)
- [+
1-3) 2

LT

Musa's Model can be related to Jelinski-Moranda's Model (therefore, to all

L 3

models which have been shown equivalent to it) by letting, ¢
n=m (4.489)
o and
Tﬁ which together gives B = 1, (4.491)
1'1
» and fK = ¢ . (4.492)
E If a point T is chosen between the occurrence of the (i - 1)st error and the
ith error, the hazard rate function for Musa's Model is

Fe Z(t) = fK(N - (i - 1)) | (4.493)
b

=¢ (N-(-1). ' - (4.494)

This is precisely the hazard rate for the Jelinski-Moranda Model.

Also note that:

Eﬁ " 1

KA = = e

. To = Initial MIBF KN | (4.495)
g becomes:

Eﬂ To = %ﬁ ; (4.496)

the correct expression under the Jelinski-Moranda Model. The MTBF, after the i

. . H
LA discovery of (i - 1) errors for Musa's Model, was shown to be: b
o 1 1
MIBF = = :
- Z(t)  fK(N - i + 1)
!.)‘
&.:«
. for y
- P-:\,‘f o
- ti-l <t<t . (4.497) AN
Y - - bt
With the previous relationships, then: E\‘_-C
i% 1 b e
| MTBF = . 4.498)  f
fK(N - i +1) ( ) —
NN
E\ g
4 "'v 54
- f-; .f‘.'
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rvfrfw
‘ot ot

e - 1 .
= S TITD (4.499)

&

again the correct expression for the MTBF under the Jelinski-Moranda Model.

[ aurmes]
[ ERRY

The importance of Musa's Model is in its development of resource allocation
and the relationship between CPU time and wall clock time. The resources (fail-

ure identificatjon personnel, failure correction personnel, and computer time) 3
influence the failure detection rate during the testing process. At any point vl
in the testing cycle, one of these resources limits the other two and thus, the

error detection rate. For example, if the number of failure correction personnel i
is insufficient to handle the =rrors detected by the failure identification per- [ﬁ

sonnel, a backlog of errors develops, slowing down the testing process. Usually
the testing process involves from one to three periods, each one characterized by ﬁ}
a different limiting resource. At the start of testing, when numerous errors are Ez
discovered, the limiting factor is the failure correction personnel. As the test- La
ing progresses and longer intervals between failures are observed, the failure

correction personnel utilization drops, while the failure identification personnel '
becomes the limiting factor. Finally, at longer failure intervals, the use of the EB
computer becomes the prime limiting factor. Musa's Model attempts to utilize the
knowledge of these limiting resources to relate execution time with the passage of

dtI th dt
calendar time. Suppose T T and I ere the instantaneous calendar time to

T
Taets

execution time ratios that result from the effects of each of the resource con-
straints taken alone. The index I denotes failure identification personnel, F
denotes failure correction personnel, and C denotes computer use. An incremen:
in calendar time, At, is taken to be proportional to the ave: :ge amount by which
the limiting resource constraints testing over a given execution time segment;
that is,

ey
R
e

T2 dtI dt

F dt
At:{ max i dgr *dv ’dr

Y

8 59

dt . (4.500)

H ‘_<I‘- x
2B ¥

From assumption (h), the resource requirements associated with a change in
MTBF from T4 to Tz can be approximated by:

A%y ¥ 6, AT + . O (4.501)

el
[

where At is the increment of execution time, Am is the increment of failures ex-
perienced, Ok is an execution time coefficient of resource expenditure, and My is

[=4

——
kel
e

%

a failure coefficient of resource expenditure for k = I, ¥, and C.

_ o=
O I [~‘::

oA,
-
r
'
"«
e

Suppose Pk represents the number of available personnel, k = I, F, or the

i r Colly

k‘ 3

7
AN

available number of computer shifts, k = C. Suppose Py denotes the utilization

£
e S

>
R

FTe T
.
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i ! factor for the kth resource, [from assumption (i), Py = 1]. Then the effective
N available amount of the kth resource is kak' From this basic formulation, Musa52
:} F derives the following correspondence between the resources and the calendar time:
IR
g Tg 0T + Cy
d av = Mo I 1 max | X% |ar (4.502)
i’ KPx
i &) Ty
vl
6 /T
L Ej‘.‘l = MTq E i,——l—— [ EE .Qn(,r—kz) + i <-,fl— - T—"—-)] , (4.503)
g kK “kPx Ky k; kg
} where the index k can have the values C, F, or I, and the quantities Tk1 and Tkz
represent the MTBF at the boundary of these periods. These boundaries are the
o values Tj, T2, and the transition points
_ CCPyb Py = By -y 2)
.“.‘;‘ Tkk‘ - P ; p S B - P p “ (4.504)
! k" k™ "k k "k "k

, for k, k* = I, F, C. The transition points are these values of T at which the

i derivative of calendar time, with respect to execution time for one resource,
becomes greater than another. The resource k that is limiting for any given
MIBF, T, is the one that maximizes:

Yﬁ 6, T + Cy '
! k Mk
. (4.505)
Pk ka

From assumption (j), it can be established that the utilization factor for
failure correction personnel is of the form:

&i 1/P.
pp=(-p  F)lQ (4.506)

F where Q is *he established limitation of error queue length (at a specified
' probability P) for any debugger.

As can be seen from the formulation of the model, the data required for
implementation of the complete model can be quite extensive.

W
Hats

{ - Data Requirements

% [Execution Part]
g

(a) The linear execution frequency, f.
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b (b) An initial estimate of the error exposure ratio, K. (The accuracy of

=0
e
l-q X

x

the initial estimate can be low).

Wit

(c) The error reduction factor, B. 4 t:.\-::;
5

(d) The testing compression factor, C. 3 'Z__.:::-',

(e) An initial estimate of the total number of errors, N. (The accuracy of o R

the estimate can also be low since it is reestimated during testing.) b E,“\
(f) The times (measured in CPUs) between error occurrences, T, 's. i3 'gt:::
Execution/Calendar Time Part E “‘fj‘f,*

(g) The available resources for both testing and correction personnel and U‘ 1:*

the number of computer shifts; i.e., P, P, and P,. s
I F C ‘;n:',

(h) The utilization factor for each of these rescurces, i.e., Py (=1, P T 3

and P

(i) The execution time coefficent of resource expenditure for each resource;
i.e., 61, OF (= 0 usually) and BC.

(j) The failure coefficient of resource expenditure for each resource; i.e.,
Hy» Hp» and He:

(k) The maximum error queue length, Q, for a debugger.

(1) The probability, P, that the eiror queue length is no larger thamn Q.

Two extensions to Musa's Model are briefly discussed here. The first appears
in a paper by Chencweth (Reference 57). In that paper, the error reduction fac-

tor, B, is generalized to the form Boeat where Bgp is the initial error reduction

factor and a is the exponential slope of execution time. Chenoweth argues that
for a certain class of software programs, B, appears to be exponentially increas-
ing. The basis of the increase is probably due to a programmer learning curve
phenomena. The parameter a can be estimated from the relationship:

*

j at, "

Ll ' /

t n(t;) = By i: ie (4.507) "

; i

i= i=1
where n(ti) is the number of errors corrected by time ti for a specified j (j=1, -
P A . . o Xy ,'“-.’::
...,m the number of errors observed) and Bo is obtained from a project of a sim- i}-, ,:-;,a:.‘:!
ilar nature or using this relationship. SRR R
Rt
P.'., ..
s . . . . . - 3!
The second modification is contained in a paper by Musa and Iannino (Refer- < (Al
ence 58). The modification can actually be applied to many of the previously I Lk
considered models, but it is illustrated in the report on the execution time """"1,-_-,“
R
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. theory model. The paper describes a method of adjusting the lengths of the inter-
in vals between software failures to compensate for programs that are undergoing
- variations in length due to integration or design changes. The models considered

so far have been applied to essentially complete programs. In the testing pro-
o cess, all of the code is being executed at one time or another. Frequently, how-
t;:j ever, only part of a program is tested and other parts are added as testing

proceeds. By ignoring these variations, estimeted MIBFs in the early stages of a
- project tend to be optimistic. The method presented in this paper attempts to
g account for the variations by adjusting the observed failure intervals to values
that would have been for a program in its final configuration with complete in-
spection. The adjusted values are used in the various models in the exact manner
as if they had been the actual data. The reader is referred to Musa and lannino's
paper for details.
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4.2.12 Brooks and Motley's Models
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The last models discussed in this section are the Binomial Model and the
Poissor. Model formulated by Brooks and !otley of the IBM Corporation (Reference
59). Their models try to account for the fact that in a given testing period not
" all of the program is tested equally, and in the development of a program, only
some portion or modules may be available for testing. In addition, in the cor-
rection of discovered errors, additional errors may be introduced. Each of the
models make the following assumptions:

v
]

e
[ A0

v’
T
Sils

L
~a

ﬁ ) Model Assumptions

(a) The number of software errors detected on each test occasion is
proportional to the number of errors at risk for detection which is, in turn,
proportional to the remaining number of errors.

iy et

— v
PA A
SACAL M A
——

a c-v

L3

(b) The proportionality factor or probability (denoted as q for the
gl binomial model, and ¢ for the Poisson) of detecting any error during a speci-
fied unit 1nterval of testing is constant over all occasions and independent

Eu of error detections.
“
) (¢) The errors reintroduced in the correction process are proportional

to the number of errors detected.

For their formulation, Brooks and Motley, develop the models both for a module
application, in case only module testing is done, and for the entire program sys-
e tem testing.

" 4.2.12.1 Binomial Model (module). Suppose a module, the jth, from the pro-
- gram is given for testing for the first time. Then the expected number of error
' occurrences in that module in the first unit interval of the test occasion is:

tﬁ ngy = w.Nq. (4.508)

J
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This is obtained from assumptions (a) and (b), where wj is the weight assigned
to module j, N is the total number of errors in the system at the beginning of

_ testing, and q is the error detection probability given in assumption (b). Brooks

and Motley define a test occasion as:

"an event of error data collection; each occasion should have
a time interval associated with it; otherwise, the implica-
tion to the model is that all test occasions are of equal
length of time.... One additional important assumption made
here is that one occasion be comparable to every other occa-
sion in terms of the time spent (testing effort) in detecting
errors."

The weight factor can be taken as the ratio of the size of the module (as measured
by number of lines of source code or object program size) to the total program
size.

For the second unit interval of testing on the jth module, the expected num-
ber of errors to be detected is:

[ij - ijq]q = [ij(l - qlq. _ ‘ (4.509)

There were ijq expected errors in the first unit interval of time leaving ij -
ijq errors subject to detection in the second. Thus the expected number of

errors in the second time interval is: [number of errors subject to detection]
°q = [ij(l - q)]q. In gereral, for the ith unit interval of time in the first

testing session, the expected number of errors is:

W N(1 - i la. | (4.510)
The total number of errors expected for the entire first testing occasion is then:
Kl‘
= a - ayi=l
ny; = g;i ij(l Q) g (4.511)
Klj _ .
= wJ.N[l - (1-4q) (4.512)
= w.Nq,. 4.513
w.Nqy; ( )

where K1j is the number of unit test intervels making up the first test occasion,
or the total test effort expended on module j during the first test occasion, and

K, .
c=[1- (- q M.

qlJ
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* When module j is tested for the second test occasion, the number of errors at risk il
‘ in module j is: "
g ij - nl‘j + mlj (4.514)
C where nlj is the number of errors detected in the first testing period and mlj is
, the number introduced into the program as a result of correcting those nlj errors,
F (assumption (c)). The total expected number of errors in the second test period
can be shown as was done for the first to be:
Ex
n,, = (w.N - an, . .
[.‘.‘ 2j ( h] 13)q23
. where @« = 1 - r, (the probability of correcting code without introducing new
'Eig errors) and Lo
o A,vff
a,: = (1 - (1-q %), (4.515) 1,
‘Q.\. J Na R
Q In general for the ith testing period, the expected number of errors detected is:
— "
E-‘» nij = (w N - aNl"l J)q (4.516) ‘::~1:::'
H where IS
i-1 L}r‘:'t.“‘,q
- = --: 1:.
E}’ Ni-l,j mzl B0 (4.518) :\.-b'}
— [y
- [
, (the total number of errors found up to the ith testing period), oy
g .=01-@0-q9 M, (4.519)
[ H
- and
= Nij = (w N - clN1 -1 J) ) (4.520)
b
e the number of errors remaining in the jth module. One notices that Kij’ the
(- amount of testing effort expended in the ith period, can be different from one
- testing period to the next. The only restriction is that the probability, q, of
h detection for any error is the same from period to period. This means that the
times can vary for each testing period, but the testing approach should be the
L same,

Brooks and Motley establish the MLEs of the three unknowns, (N, g, &) of
their model as the solutions of the following equations.
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u Estimates - Maximum Likelihood m

z
P
-
I

! -

\ K J N.. sl
:}j.: 3ml _ = S| witn| —31— | + w.X. .2(1 - q) (4.521) . l"‘.'.‘
N oN £ J = Jjia . .
N 1 = §.. - n b

i ij O [t
i J J oo
e 9&nL _

.
a

K Jr ninii -
5“ 3¢ =0 };& };& X - KijNij (4.522)
. e L(l -(1-¢q M
E§ and
8laL _ ¢ - §§ Si N, . .&n My + N K..2n(1 - q)  (4.523)
30 o & | ik 5 - i=1,j “ij 9 ‘
i 3 i niJ
where the likelihood function
K J ﬁi‘ n, . ﬁi‘ - n,.
L= 0 1 I )1 .. (-9 Y J (4.524)
P P 1] B
i=l j=1 n,./
ij

K = the number of test occasions, J = number of modules in the system,
and n, . is the actual number of errors observed on the ith testing occasion of the

jth module. These equations do mot have a solution if ﬁij By becomes negative.

It could happen that the effective number of errors at riek, Nij’ becomes smaller

than the actual number of errors observed for the jth module on the ith testing
occasion. In that situation, it is recommended that the system model be applied.

4.2.12.2 Poisson (module). As in the Binomial Model, suppose ﬁij = (wJ.Nj -

“Ni-l j) is the effective number of errors at risk in module j at the beginning

]

of the ith testing period. Using assumption (b), the expected error detection

rate for the first unit interval of length t is ﬁij¢‘ Thus the expected number RE e

of errors that are detected is the error detection rate, ﬁij¢’ times the length of

the testing interval; t, i.a.,

ngy = Nyjot. (4.525)
At the end of the first unit time interval testing period of module j, the number
of errors remaining is:

r—
T
A

e

>
K
e,
e
ot
.
'
T

N.. - ﬁi.¢t = number of errors in the module at the beginning of the i
J J first period minus the number of errors detected during .}
the first testing period. (4.526) ~

N tﬁﬁ

‘n.‘. L'.n.:

R
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The error detection rate for the second testing period is:
[Nij - Nij¢t]¢ = [Nij(l - ¢t)]o (4.527)
so the expected number of errors is therefore:
[Nij(l - ¢t)]¢t‘

for the second unit interval of testing. In general, for the t.. unit interval of
testing of the jth module in the ith testing period: 1

(a) The number of errors remaining at the beginning of the interval

t,.~1
=§,0 - ot) (4.528)
(b) The expected error detection rate is:
- ti.-l
=80 - ot) Y ¢ (4.529)

and thus,

(c) The expected number of errors detected is:

t,.-1
ﬁij(l -0t) Y et © (4.530)

The length of the unit testing interval, t, is then normalized to 1 (example: 1
day, 1 week, etc). Thus the total number of expected errors for the jth module
on the ith testing occasion is:

N..0(1 - ¢) .531
n. = 2 59
13 2=1
= Nij¢ij (4.532)
where
ti.
¢ij =1-(1-¢) 1. (4.533)

The likelihood function is then:

=z

- n,. =~ N..¢..
K J (§..0..) e 1N
L= 0 0 1) 1] — . (4.534)
i=1 j=1 ij

The MLEs are then obtained as the solution to the equations:
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~ Estimates - Maximum Likelihood

-

K J n,.
Pl o= 3 wo| -, (4.535)
i=1 =1 J|N,, J
1]
K J t.. n,.
Bak=o0= 3 e, (1 - ) M LY (4.536) MR
RN 1- (- 9)'ij ) R
(o
and F; Ko
———aan = - Ili--.-.j- - - .n"lil':
aa - 0 - ; E Ni-l’j [_ ¢ij] (40537) t-.._: E-':'b'
i=l j=1 N, . v SN
ij A A
(e
A ‘k;.:;
4.2.12.3 Binomial (system). For this model, the overall program is con- t; o
sidered as a whole. Keeping the same notation as was used in the Binomial (mod- t:f
ule) paragraph, if J, is the index set of those modules tested on occasion i, N
then the total number of errors remaining in the program and subject to detection yé {?Y
s o
ﬁ [SSTAN
N, = ];; WN - oN,_ .) . (4.538)
i, 3€3, J i-1,j A A
: 424 FJ':
Since the system is being con31dered as a whole, the test effort involved for the %{ ﬁﬁ:
system can be considered as a whole rather than on a modular basis. The * ﬁ&'
s' ]
K,
gy;=-0-9 1) (4.539)° Ea tﬁq
N
of the modular section is then replaced by: fq% bﬂ;
N RN

K.
=[1-(-4q % (4.540)

where Ki is the system test effort (e.g., computer CPU time) expended ou the ith

test occasion. Combining the previous information, the total number of expected
errors in the system for the ith testing occasion is:

n, ='Niqi . (4.541)

The likelihood equation for the system is therefore:

K N n N,-n '
L= T 1) gt a-qpt i (4.562)
i=1 n,
1
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I where

"W R AP RS LRI L T e A 8 8 b

J

i i = 3 n,, = total number of errors found in the program (4.543)

&f j=1 J on the ith testing occasion.

£

The MLEs are then obtained as the solutions to the following set of equations:

o Estimates - Maximum Likelihood
R
T g 94nL K Ny
s al=0o= ¥ [ ] +Ken(l - Q) X v, (4.544)
PR i=1 N, - n, jed; J
I \ 1 1
RS K oKk, .
E gg%n_ =0= 3 i - KiNi] (4.545)
L Elli-a-9 J
5N
i e [/ &
n 94alL X Ny
S 28b-0= Y | |- +K 1 -q | ZN_ . (4.546)
f k... i=l Ni - ni jed, L

b\ %

a7

Again if ﬁi - o, the difference between the expected number of remaining errors

and the actual number of errors found on the ith testing occasion is negative, no
solution exists to these equations.

>

PR . SR

; 4,2,12.4 Poisson (system). Using the expression for the number of errors
at risk at the start of the ith testing occasion for the system, i.e.,

el

:
"
5

t:. ﬁ. = z (W..N'UN' -) ’ (4-547) r
& i U T W ¢
A AN jed, Lol
s : R
| the total expected number of errors is: f§§n:
RN
£ - & L
where
fu%
b ti
b b o, =1- (1 -¢) (4.549) :
S and t, is the total time spent for the ith testing occasion. E?ja
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The likelihood function is therefore:
- n; -ﬁiQ
g (N.0.) " e
L=
i=1 n;!

(4.550)

where n, is the total number of errors detected during the ith testing occasion.

The MLEs ave again obtained as the solutions to the following system of equations:

Estimates - Maximum Likelihood

94nL (4.551)

(4.553)

.

“ | ‘ K . | |
Al = 0= Y (24 A (4.554)

i=1

The various sets of equations given in the previous pacagraphs can all be
solved using the Newton-Raphsor method with the warning ab. t the (Ni - ni)‘s be-
coming negative applying as in the binominal formulationms.

All of the models by Brooks and Motley were applie’ to real life and simu-
lated data. One criticism that might be made against their models is the assump-
tion of a constant detection probability, q. In a testing environment, the usual
situation is that q varies over time. This is due to limiting resources, the
easier errors are found at the beginning, while the hidden errors are discovered
much later and at greater effort, and there is a learning curve effect on the
testers. Brooks and Motley do however try to account for this by considering an
extension to their basic models. They allow for the probability of detection to
increase at a constant amount until it reaches a point where it levels off. The
resulting equations for this extension are very complex and would be difficult
to implement on a computer. The reader is referred to their paper for additional
details.
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4.3 BAYESIAN MODELS

The class of models considered in this paragraph formulated software
reliability modeling in a Bayesian framework. The models employ a "subjective"
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approach to the meaning of software reliability in constrast to the traditional
"frequentist" approach. Previous models only allowed for change in the reli-
ability of a program whenever an error was discovered and subequently corrected.
Bayesian models take the subjective viewpoint that as the software is tested, if
no errors are discovered, there is more confidence in the program and this is
reflected in inc.c-easing reliability. The reliability of a precgram should be a
reflection of the number of errors discovered and the length of error-free testing
time periods.

o E T x
n T _e

- ’I’ =
Pl
£l l'.
PR

i f 2 T

Another important argument given in support of : Bayesian approach deals with
counting errors. All of the models considered so fa. assume that the hazard rate
function is directly proportional to the number of errors in the program at the
time. From this assumption, it is directly determined that the reliability is a
function of this count. This is the reason the models corsidered in the previous
paragraph are concerned with estimating this total. The Bayesian approach argues
that a program with two or more errors in little exercised portions of code is
considered more reliable than one with only one error in a frequently executed
section of code. The estimation of the total number of errors present can be of
use to the software manager in making determinations of resource allocation, but
it should not be the driving factor in reliability considerations. One should be
concerned with measuring operational reliability.

A number of mocdels which attempt to do this are now considered.

4.3.1 Littlewood's Bayesian Debugging Model ;

The first model considered within this class was proposed by Bev Littlewood :g%;
of the City University of London,60'61:62163164 The model reformulates the o
Jelinski-Moranda Model (Paragraph 4.2.3) into a Bayesian framework. The Jelinski- %Qat
Moranda Model postulates that, at any point in time, the error rate is propor- 7

tional to the number of errors remaining in the program. This is expressed as for
any time t, for t. <t <ty

NN

=y - 4
T
el &

[3

,_.
LJ l‘l-
»

* et &

£ -2

Y

‘A
i
s

2(t) = o(N - i + 1) (4.555)

where the ti's are the times of error occurrences. By making the assumption that
& the times between error occurrences, i.e., Xi = ti - ti-l’ follow an exponential

distribution, the probability (ensity function for Xi is seen to be:

f(Xi) = ¢(N - i + 1)exp[-¢(N - i + l)Xi]. (4.556)

The model inherently makes the assumption that all errors contribute equally;
namely ¢, to the overall errvor rate. The Bayesian viewpoint objects to this
assumption.®5 Each error does not contribute equally since the correction of
errors in the beginning of the testing phase, has more of an effect on the program
x than ones corrected later. Again the argument that a program with two errors in
%ﬁ rarely exercised code is more reliable than a program with only one error inm a
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frequently exercised section surfaces. All errors, therefore, do not contribute
equally. Littlewond postulates that the error rate

Ai =2(t) = 6N - i+ 1), t,pSt<t, (4.557)

should be treated as a random variable, not as a constant. By assuming that the
remaining errors have different occurence rates ¢;, 2, ¢N-i+1’ the overall fail-
ure rate is then:

A= 01 % 0 ¥ co. t Onoisy (4.558)
By treating the ¢i's as random variables (since it is not known what they are),
the overall rate as a random variable is obtained. (Notice that if all of the
¢i's are assumed to have a degenerate distribution at the point ¢, i.e., ¢1=0¢2
cvv = Opoi41 = ¢ with probability 1, then A, = ¢(N - i + 1)). The specific as-

sumptions for this model are:

Model Assumptions

(a) The individual failure rates of the errors in the program are assumed to
be independent random variables each with a prior distribution that is assumed
gamma with parameters o and B, i.e.,

Bu¢a-1 e-B¢
g(¢;) = 8(4y) = —pg » >0 (4.559)

I

for all i and j.

(b) For a given error rate, Ai’ the time between error occurrence Xi = ti

- ti_1 is assumed to be exponential with mean I/Ai; i.e.,

-ALX,
_ i%i
f(Xi Ai) = Aie Xi >0 . (4.560)

/

(¢) )\.i =0y +t g+ ...+ ¢N"i+1 (4.561)
after i ~ 1 errors have been detected and corrected.

(d) When a software error is detected, it is immediately corrected without
the introduction of additional errors.

(e) The software is operated in a similar manner as the anticipated opera-
tional usage.

The model is developed as follows. Suppose Xi,..., Xn are the times between
errors occurrences, i.e.,

X. =t, -t (4.562)
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:ﬁ 1§

:

" iﬁ (Preferably X, is measured in CPU time rather than wall clock time.) At the time
;3 the ith error is discovered and corrected from assumption {c),

'y -

E [\1 PSRRI S - ILRERI A (4.563)
B Now suppose the occurrence rate ¢k for any one of the remaining N - i errors is
: g% considered. The density function for ¢k is pdf(cpk |given that error was not found
B

in (0,t)), where t is the current testing time

RS
e_ Xz,

P{no failure by that error in (0,t)| ¢ = ¢k} pdf(¢k)
= f : - — (4.564)
Pi{no failure by that error in (O,t)l ¢k = ¢k} pdf(q)l;)dqak

ot B gt e P

i A i () R

= o o 0yt Y ¢g‘1 e ~Poy doy, (4.565)
i of @
s |
‘ (p+t)? ¢k°"1e'(5+ti)¢k

= ea) . (4.566)
Eﬁ Thus ¢k has a density function that is also gamma with parameters o and B+t.

Since Ai+1 is a sum of independent, identically distributed random variables, Ai+1

Fa is also gamma with parameters (N - i)a and B + t. Thus, the unconditional distri-
o bution of the time to the next failure Xi+1 is:
& -
& £(X,,,) = oj‘ E(X) 4 |Agan) 8Oy, (4.567)
o o -\, X (N-i)a
- 0 i+l  (4.568)
I T - 1]
Ky
s o A.ﬂ[(N'l)‘m]'le'(B+t+xi+1)}‘i+1(ﬁ+t)(N'i)“
o = J 2 Ay g (5.569)
h 0 (N -~ i)al
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R ’ |

& (N-1) :
S - i)a) B+ e) 0

X i+l 3

o This is a Pareto distribution. From this basic result, Littlewood derives a num-

P ber of quantities. The reliability function after i errors are discovered is E3
sﬂ‘ f d . !
m ound as:

Eﬁ R(x) = {Xi+1 > x} | (4.572) G
;Ei;?, =1 - P{X,, <x} (4.573) &
._]

LAY o

" ;
" - J s (4.574)

o 5 XKy,

% =[__£L+_£2_] (¥ - i)a (4.575)

(B+t+x)

.":.‘
X3 &=

The failure rate function is then obtained as:
, _
2(x) = - R'R(Z§)§ * li t Pii ' (4.576)

Thus, the failure rate, immediately after i errors have been discovered and t

%

S
L]

3

amount of testing has been employed, is: bt
z2(0) = (N - 1o (4.577) .
B+t N

Notice how this unconditional failure rate changes after testing progresses. As
t gets larger, the hazard rate decreases reflecting the increased confidence in b
the program. The hazard rate also decreases whenever an error is discovered and ’
corrected.

za

The MTBF is found from the Pareto distribution as:

MTBF = E{Xi+1} = djg xi+1f(xi+1)dxi+1 (4.578)
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- Bttt
T -1a -1 | , (4.579)

which exists as long as (N - i)a > 1.

From this basic model formulation, Littlewood approaches the problem of pre-
diction of future reliability in cne of two ways. The reliability of the program
can be estimated after some specified execution time has elapsed or after some
specified number of errors has been removed. The development of these two ap-
proaches is provided in Reference 61 and is not repeated here; however, the uses
of those results are.

For the first approach, suppose t; amount of testing is performed and i

errors are discovered and corrected. Now suppose At additional amount of testing
is done. Then the reliability of the program at the time L+ At is shown to.be:

o

B+t B+t a7 ¥-i |
R(X) = 1~ m + B+ ti T AL T x . (4.580)

From this relationship, the amount of additional testing needed in order to
achieve a target reliability can be determined. If the desired reliability is r
for a specified error-free run time of xo, then the additional testing time re-
quired is the value At that solves the equation:

B+t a B+ t, a9 N-i |
r=| 1- = + 2 . (4.581)
B+t vAt |  \B¥ At + %o

Littlewood also shows for this approach that the required additional testing time
At to achieve a specified target failure rate, Ag, is:

At = X
0

- B+t . (4.582)

For the second approach, suppose i errors are observed and corrected. In-
terest lies in the times between error occurrence of the next k errors, i.e.,
xi+j’ j=1,...,k. Littlewood first derives the distribution of:

AB + t,)
2 =l 1% (4.583)

where A is the failure rate at the occurrence of the i + k error. From the pre-
vious results, the following is obtained:

A= —(N-1d ;+t)“ . (4.584)
B+t, + 2 X,
og=inn
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o The distribution of Z is beta with parameters N-i-k+1 and k, so that the expected -
value of A can then be obtained as: : Ll
0 N Yo
ﬁq E{A} = (N -i- Kk . (N=-i-=-k+ 1) . (N - i)
= B+t W-i-k+Da+1 " OW-1a+1 )
;i (4.585) A¢

From this reéult, the number of additional error bdrrectlons, kd, that are re-

.qulred to make the E{A} less than a desired level Ay can be established. This ¢
is the smallest integer ko satisfying: . |

(N - i =kgla (N-i-=-k+ Da . (N - 1) < An N

B+t (N-1i-ko+ Da+1 (N 4_*)a +1 o &;

(4.586)

It might also be asked how many additional error corrections are necessary in
order to be at least Y percent certain that A < Ag. This is the smallest integer
ko such that: .

(B + ti) Ao « :
P Z< N - ko)a >y | (4.587)

where Z is from a beta distribution with parameters N¥-i+ko+l and kg.
X
For this model, there are three unknowns: N, o, and B. They can be estimat- Eﬁ
ed using the maximum likelihood procedure ox least squares. If Xi, i=1,...,n is

the time between error occurrences, then from the assumptions, the likelihood I
function is: : fi

. .
LOAB) = T EOK Xy iky) (4.588) E%
n F:'
Joa-ie @, p® - D @559 ¥
= 12 4.589
N - 1 +1)a + 1
(B + tiog * xi) , .
where -
3
i-1 Eﬁ
= 2 X (4.590)
j=1

is the time of occurrence of the (i - 1)st error.

A A

The MLEs NL’ ay and BL are the estimates which maximize:
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Estimates - Maximum Likelihood

-~

L(ﬁL,aL,BL) = nax ﬁL(N,u,B) . (4.591)

Littlewood points out that this maximization search can be restricted to the two-
dimensicnal space of N and P as:

SRUI LRS- oL acPLl
e fg -
. .12 .
>

. oy = . - . . (4.592)
t'fi =l [t ) A By + &y
4 o] #—— |+ NL in}| ———
=1 Lty B
,: E The least squares estimates are those N, o, and P which minimize
~'_‘1 ' n
B B+ t, 2
A - Z - i-1 (4.593)
i i SN, a, B) = & [Xi ((N -1+ 1)d - 1 )
b A using equation (4.579). The least squares estimates N s B and « are
*f \’l:: chosen so that: L, "L,L§’ L,LS
.«5 ' A - ~
- S(N y B y O ) = mia S(N, a, B) (4.594)
d i 180 Prose %n,ne) = 0 SH
:5:: ) and are found as the solution to the following system of equations:
oIS 98 _, 8. 85 _ '
,~ ﬁ The least squares estimates are then the solutions to the equations:
s X Estimates -Least Squares
’A‘ﬂ l".
v R ~
‘?».‘ x + t“
B! r" S i -y — PLas * ien (4.596)
' . i= - i - = - - 2
R i=1 (NL,LS i+ D“L,LS 1 i=1 [(NL,LS i+ 1)“L,LS 1]
o n X.(a +t, ) (8 +t, )2
i‘:‘. [a) L L’LS i-l 2 = Z X LLLS ‘Ki“l 3 (40597)
' =1 [(NL,LS - i+ l)uL,LS - 1] i=1 [(NL,LS ~ i+ 1)aL,LS - 1]
EI;?
e
E« 4-107
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- , ) A . , A 2
X O gg = 2+ 1) (By g+ tyy) n (Np g = 8+ DBy 1o+t )

Mt n i
R " E

A = - 3 - 2 by - - 3 N
W =1 [(Np pg =i+ 1) o g 1] =1 (O gg = 1% Doy e - 1] R
i ' (4.598)
D To implement this model, the data required are: E@
s i
pred 7
Data Requirement rﬁ
N}

The times between error occurrences, i.e., the Xi's, or the times of error
occurrences, i.e., the ti's where

pm—i——
T

X, =t -t 4. | (4.599)

Once the parameters N, a, and B are estimated, all of the previous quantities ;
developed in this paragraph can be estimated by replacing the parameters with
their correspondirg estimates. '

]
An alternate Bayesian modificatior. of the Jelinski-Moranda Model is given in E4
a paper .by Littlewood and Sofer.®® 1In that paper, the times between error occur-
rences, i.e., Xi's, are assumed exponential, but with parameters .ﬂ
Ai = A~ (i~1)¢ i=1,...,n. (4.500)
Constrast this with the model considered in this paragraph of -a
}‘i = ¢1 + 0 + ..t ¢N"i+1 (4.601)
) For both formulations, the A,'s are taken as random variables. For the alternate Ea

P
1 €

model, the A and ¢ are taked as independent random variables with prior distri-
butions Gamma(b,c) and Gamma(f,g), respectively. All of the quantities devel-
oped in this section for the first Bayesian Model are developed for the analogous
ones in Littlewood and Scfer's report. They are not repeated here.

oecT
a_e X
LSS
——
-r‘ -
PP

"“-:l

e {4

"
4.3.2 Littlewood and Verrall's Bayesian Reliability Growth Model f!
The next model considered is the Bayesian Reliability Growth Model proposed Ff
by Littlewood and Verrall.87768'69 The model tries to account for error genera- ;ﬂ
tion in the corrective process by allowing for the probability that the program
could be worsened by correcting the error. The intention is to make a program o
more "reliable" when an error is discovered and corrected, but there is no iﬁ
assurance that this goal is achieved. With each error correction, a sequence of .
programs is actually generated. Each is obtained from its predecessor by

attempting to correct an error. Because of the uncertainty involved in this
correction process, the relationship that one program has with its predecessor

G
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A
RN cannot be determined with certainty. This is a second source of uncertainty in
h B the modeling of software reliability (the first dealing with the variation of the
fg ‘ inout to the program). The specific assumptions for the model are:
N Eﬁ
ﬁﬁ oy Model Assumptions
i B (a) Successive execution times between failures, i.e., X., i=1,...,n, are
W independent random variables with probability density functions
¥
W o "My 3
o E(R;|Ap) = Mge Xy >0 . (4.602) 0
Ii . That is Xi is assumed exponential with parameter Ai. v re
AT PR
<_|..) .‘4' R . . h;'a’.‘l
iy; Lf (b) The Ai's form a sequence of independent random variables each with a b
gamma distribution of parameters a and $(i), i.e., EEEE
o

a a=-1 =P(i)A,
_ (WA, e -

g(}\i) Ai >0 . (4.603) i el
t'-.)_‘ﬂ;

The function (i) is taken to be an increasing function of i that describes the
"quality" of the programmer and the "difficulty" of the programming task. A good
programmer should have a more rapidly increasing function ¥ than a poorer pro-
grammer. The § function reflects past and future changes in reliability as a
growth process.

S T

e
TR
LAY

T .
'.! Eﬁ’
Fd o ('3

a
Lad

(c) The software is operated in a similar manner as the anticipated opera-
tional usage.

By requiring the function { to be increasing, the condition
P{A(i) < 2} 2 P{A(j - 1) < &} (4.604)

for all j is satisifed. This reflects that it is the intention to make the pro-
gram better after an error occurs and is corrected, but it cannot be assured that

;; our goal is achieved.
T
'g} When the two sources of randomness are put together, then
,a ;;_
5 f[xi|a, Y(i)] = djg f(xilki) g(Ai)dAi (4.605) Ki:
A X, IEETTEN L
= Coage PR u@nafte e 13
d/£° L (4.606) L2
I'(a) =
-

Py
-

2,
4 ‘t-—'-“'l!')'."
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i

."

e e ln T2
Ly
F

2~

-
e
-z

= o [¥@)]° > 0. 4.607
[x, + @) " " (4-e0m

e Notice that the xi's are no longer exponential. They now have the Pareto distri-

frad bution. The joint density for the x.'s is then

@1 )]
i=1

x; >0, i =1,...,n .

i f[xi,...,xn|0h ¢(i)]
[x; + w(2))*"! (4.608)

n=as

. i=1

Littlewood and Verrall suggest the following forms for the Y function:

(i) = Bo + B1i (linear) (4.609)
and

$(i) = B + B1i?% . (quadratic) (4.610)
(Littlewood finds, for one set of data on which the model was applied, that the

linear function is superior to the quadratic function.®8) 1In either case, the
likelihood function is now a function of three unknowns (a, Bo, and By). MLEs

could be found by finding the aLV’ BO,LV’ and BI,LV’ which:

L (;LV’ BO,LV’ a1,LV) = ( gzx 81) L(a, Bo, B1) (4.611)

where ]
(] ':‘.

L(a, Boy B1) = f(x1,...,x | @, Bo, B1) . (4.612) kiq

RN

These MLEs are the solutions to the following system of equations: ;}I F"}f
WA

1

s v

Estimates - Maximum Likelihood tq e

el A

i

5 = *Z o b(i) - ): fn [x; + b)) = (4.613) B

A h ‘n "‘~_,‘n

0 l -4 Lz.t:ﬁ

e,

. n n ".:: ;_‘:._‘.

g%- =4 3 - @+ —L = (4.614) RIIERN

0 i=l  Y(i) i=1 x, + Y(i) i

% ::':':

o

X NLAR RS
s x>
A

v
.
s
2
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A
i - and

E n ., » n ,
] 9%_=a oA a@tn Y —— =0 (4.615)
¥ Fg 1 i=1 (i) =1z, + (@)
Voo
o vhere
! f% Y(i) = Bo + Byi or Bo + Pii? (4.616)
-A ‘-.
A
4 and
g

L i” =1 or i% ., (4.617)
! e Littlewood and Verrall eliminate the parameter a through a Bayesian analysis. By
5 assuming a uniform prior for a, it can be shown (Reference 67) that the distribu-
g tion of X, is:
N , it2q -1
3N i x; + w(l)
{ £(x,| Bo,B1) = —L— [(y + zn( J (4.618)
x, + ¥()
% ?} The MLEs for Bo and By are those parameters which then:
v .
NN L(Bo,B1) = max  L(Bo,Pf1) = max T f(xi|ﬁo,ﬂ1) . (4.619)

Bo,B1 (Bo,B1) i=1

{4
w

El £y Littlewood and Verrall present an alternative way of estimating Bo and P; based
o i upen goodness-of-fit. The reader is referred to their paper®? for details.
)

Another procedure for estimation is based upon least squares. Since

) &
Y o

uj ‘ ,y O

I{_:‘ :7;: f[xilou ll‘(l)] = (x i ([p'ff,;% 1 ° (4.620)
o i

o the MTBF is

;j K2 a

b E{X,} 1y (4.621)
s .} = . X, *
- : S b ™t

= b = [¥@)] (4.622)

a-1

.
v
e
v,
e
o

provided a > 1,

The least squares estimates are those paremeters which minimize:

2
S(a, Bo, Bl) = zn: (xi = M) y (4.623)

i=1 a -1
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a In particular, if :—I Lot
i ; bt e
(i) = Bo + B1i _ (4.624) ?&d
~ N . :{:_"‘"‘w
the least squares estimates & .., B , and B satisfy the following system of t;"a E‘;‘\f}“
east Ls* Po,Ls 1,18 N
equations: 3 &
—‘vi !li'.\;l“'.
Estimates - Least Squares b B
o - R
5 PILEY b R
8 _ o g Lo ; VNN
53 = g 1 - - =0 , (4.625) E—u-
2%, Y(i) oo
i=1 RN
n n B By pgnl(n + 1) ;
Boe 3 omy - LB =0 , (4.626)
i=1 dpg - 1 2(opg = 1)
and
n
atn+ DBy 15 By geitt
98 _ <& an 0,Ls _ P1,L8i=1
58, ° 1_>-:1 %1 - 0. (4.627)

z(aLs - 1) (“LS - 1)

The data required to implement this model are:

Data Requirement

The times between error occurrences, i.e., the xi's.

4.3.3 Thompson and Chelson's Bayesian Reliability Model

he last model considered in the Bayesian framework for software reliability X

is one proposed by W. E. Thompson and P. O. Chelson.’® The model they developed L

is one step in the direction of obtaining total system reliability. Their ulti- RN

mate goal of system reliability included system malfunctions not only due to t'.',j :::-‘__'.
software but to hardware and unknown or ambiguious source-related malfunctions as omeE

well. In a paper by R. Haynes and W. E. Thompson,’! this total system reliability .o

model is formulated. The one aspect of this model that this paper presents is oo

the reliability model developed for the software related errors. This model at- N

tempts to account for the fact that a given software program might be error-free e

(hence, an infinite MTBF)?2 and it provides for software redesign and repair n "7.;-

after malfunctions are observed in a given test phase. The specific assumptions %% E

for their model are: N

R
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ﬁ Model Assumptions
- !l (a) The program is not corrected during a testing cycle-only at the comple-
o tion of a cycle and before the start of a new one.
Mn"l ~
ﬁ: Eﬂ (b) The software is operated in a similar manner as the anticipated opera-
o tional usage.
F} (c) The software errors are assumed to occur at some unknown constant rate,
. A. The total number of errors observed in a testing cycle of length T follows a
Poisson distribution with parameter AT; i.e.,
[
ke . =AT .y o £
£(£4|M) = E__fﬁ_!\lLl £,=0,1,... (4.628)
. i

& (d) If p denotes the probability that the software contains one or more
errors, it can be assumed that p has a prior distribution that is beta with

o parameters a + 1 and b + 1, i.e.,
e

gp) = —L@FB¥D)_an b gcp< e, by -l (4.629)
b F(a+ 1r® + 1)

The parameter a is thought of as the number of previously delivered software pack-
ages with errors among a total of a + b delivered.

(e) The uncextainty about the parameter A is expressed as a prior distribu-
tion for A. It is assumed gumma with parameters Ty and fgtl; i.e.,

¢
5 To (ATo) £
h(A) = FT?E_?_TT exp (=ATp) A>O0 ., (4.630)

EX

The fo can be thought of as the number of software-related system malfunctions in
previous testing of total duration Ty.

Thompson and Chelson congsider two situations. One is the situation when
it is known before testing begins that the software contains errors, i.e., p = 1.

1 The other situation is when there is uncertainty about whether the software does ¥
o or does not contain errors. This is expressed by the use of the prior in assump- LD
" tion (d). If in this latter situation, an error is discovered in the testing N
cycle, p is set equal to 1 and the prior g(p) is made a Dirac delta function at RN
B p=0. bt
s l'n“:
For the first situation, Thompson and Chelson show that if f, errors are #*”
- observed in testing time T,, then the posterior distributions for A and R (the e
N oy
t software reliability), are: o
Ej ﬁ;i
o o
l.- -:':h:‘
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f.+f5+1 fi+f0

(T, + Tg) * A _ '
- i -
h(}xl fi) = r(fi T Tg T D) exp [ MTi + Tg)] A>0 (4.631)
and
T, + T
fotf, (_1__.__.0. - 1)
T, + To 1 Jfott~1 R t
ER|£;) =\ . 2n (;) X ) (4.632)
0<K<1.

(The t is th: postulated wission time for the program.) The distribution for R
reflects the posterior view of the program reliability after fi errors are ob-
served in the current testing cycle.

The second situation is the one in which no errors are observed in'the test-
ing cycle i; i.e., f, = 0. This generates the uncertainty about whether the
program does or does Tnot have any errors still residing in the code. For this
situation, the posterior cumulative distribution functions for A and R are shown

to be:
A fotl £
_ _ _a+1 _ _b+1
H(}\l £, = 0) = W of (Ti + Tg) X exp( x(Ti + To))dx *(a e 1 2)
(4.633)
and
| : T, +To-1 B
(Ti+To)f°+12n—}-‘E‘ x*
F = 0.p) = . . 0<R<1 !
(R| £, yP) = P FEo v 1) | dr O<R 4.636) ﬂ
=1 R=1. (4.635)
If a squared error loss function is assumed in estimating A and R, the Bayes' @
estimates for A and R are then the means of the respective posterior distribu- :
tions. They are shown?! to be: i:‘)

Estimates - Bayes .
re—fatDd | (o*1) (4.636)
(a+b+2) (T +To)
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B
4-114 ¢
F{a‘
LR

A

\)"“" . EL
's I A
A AT Yl e T




PRI R R A N TRl A A T SN, B AL I e R bR St R Sl T Thdts TLIENIL RV N SPUL IR SV RN

NSWC TR 82-171

el

i‘ and
ca Re_atl Tt To forl . b1 (4.637)
- a+'.b+2 Ty +To+ 1 a+b+2
Lﬁ for fi = 0 and
! N fi + fo '+ 1
i 0
2
5 and
3 A '1‘i + Ty fo+fi
‘:2 R= Tm (4.639)
) - for £, > 0.
Y 1

Thompson and Chelson show, in their paper, how the various distributions can
be used in determining when testing is to be terminated. The decision rule to do
o this is formulated in a sequential manner. The reader is referred to their paper
i’ for additional details. -

ii Notice that if i - 1 test periods have elapsed, then
- i-1
N To= 2, T. (4.640)
‘ 4 i
]:‘3 i=1
) and
2 1
| fo= 2 £, . (4.641)
e i=1
t? The data required to implement their model are:
fﬁ Data Requirements
v (a) The number of software errors discovered in each period of testing,
l:“‘ ine-, f.'S.
v 1
. (b) The length of testing time for each period, i.e., the Ti's.
E{ (¢) For the total number of software packages that have been released, the
number found to contain errors. These numbers are used in determining the prior
N distribution for p at any stage.
"4
Ci
| t-‘.{
'-v’ by
o -
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4.4 MARKOV MODELS

This next class of models views the software correction process as a dis-
crete space system in which a transition from one state to another occurs when-
ever an error detection or correction is made. These models attempt to achieve a
more precise and realistic error behavior prediction but at the cost of a great
deal of added complexity. In fact, the models in many cases cannot be used to
derive a closed form solution. Only large sample approximations can be given or
approximate numerical solutions can be stated. Much research is still needed in
this area of modeling. This section is included for completeness in the presenta-
tion of the various approaches to software reliability modeling. Because of the
complexity of the models, this section is not developed in great detail. The
reader is referred to the respective research articles for additional details.

4.4.1 Trivedi and Shooman's Many State Markov Models

The basic model and its generalizations are presentad in a paper by Ashok
Trivedi and Martin Shooman’® under contract to the Office of Naval Research and
the Rome Air Development Center. The model is used in providing estimates of the
reliability and availability of a software program based upon an error detection
and correction process. Availability is defined as the probability that the pro-
gram is operational at a specified time. The software can be viewed in either
one of two states "up" or "down.'" The system is in an up state if no errors have
occurred or an error has just been corrected. The software is in a down state
when an error has been discovered and is being corrected. The sequence of up
state is denoted by (n, n - 1, n ~ 2,...,n = k,...) while the sequence of down
states is denoted as (my, m - 1,...,m = k,...). The system is in the up state,
n - k, if the (k - 1)st error has been detected but the kth has not. It is in
the down state, m ~ k, if the kth error has been detected but not yet corrected.

The specific assumptions for the model are:

Model Assumptions

(a) The transition probability from state i to state j (pij) is dependent

only on those states and is independent of all past states except the last one,
(The Markov property.)

(b) The error detection rate for the state n - k is known; denote it as

A The error correction rate for state m - k is known; denote it as I

n-k’

(¢) Finite nonzer» times are spent by the system only in the system states.
The transition times are infinitesimally small so the probability of two or more
error detections or corrections within this time frame is zero.

(d) The software is operated in a similar manner as the anticipated opera-
tional usage.
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(e) When a software error is corrected, it is done without the introduction
of additional errors. :

(f) The program is assumed to be fairly large (the order of 10% words or
more of code).

Some of the generalizations of this basic model include allowing error intro-
duction in the correction process and the system can be in more than two states.
A generalization of the basic model allows a third state, a "noncritical down"
state. The reader is referred to Trivedi and Shooman's paper for details.

The two specific cases of the basic model that this pap. reviews are called
Model I and Model II. For Model I, the error detection rate, An-k’ and the error
correction rate, Moo 3re taken as functions of the number of errors that have

occurred, i.e., k. In Model II, the rates are taken as functions of time. The
choice between the two models is determined by the way the error data are col-
lected. For Model I, the individual errors are recorded along with the time of
occurrence of each error. FYor Model II, the number of errors is recorded over the
operating time of the program.

For eithar model, the derivation of the reliability and availability is as
follows. Suppose Pn_k(t) denotes the probability that at time t the state is
in the n - k up state. Similarly, Pm_k(t) is the corresponding probability, the
system is in the m - k down state. Then the availability of the program is:

A(t) = P {system is up at time t} (4.642)
=P (¢} +P _,(t)+ ... (4.643)

®
= EE% Pn_k(t) . (4.644)

Thus, only the probabilities for the various up states for the system are needed
to derive the availability. The reliability on the other hand, depends upon the
stage of debugging since the smaller the number of residual errors, the less
likely it is for the program to "discover" them. Suppose the system has just
entered the state n - k at time t. Suppose this time is renamed as T = 0, then
in the interval (0, TK)’ where Tk is the time of discovery of the kth error, the

error occurrence rate, A(k), is a constant. The reliability function is then

R(1) = e MEIT 0<t<T k=1,2,.... (4.645)

k’

Hence, after the (k - 1)st error has been corrected, only A(k) is needed to esta-
blish the reliability for the program for all times between the occurrence of the
(k - 1)st and the kth error.
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Now consider how the state probabilities are derived. First, Model I is
considered with the special case of constant error detection and correction rates,
i.e.,

An-k = An_k(k) = A k =0,1,. (4.646)
and
Hpek = pm_k(k) = M k =0,1,.... (4.647)

For any At (At small), the following system of equations represents the transi-
tion behavior of the Markov system:

P (t + At) = (1 - Mt)P (t), (4.648)
(t) k=1,2,... (4.649)

Pn-k(t +At) = (1 - AAt)Pn_k(t) + pAt P

m-k+1

and

i

0,1,... . (4o650)

Pkt *4t) = (1 - pat)P . (t) + AAtP _, (t) k

By dividing both sides of the previous equations by At and letting At+0, the fol-
lowing set of differential equations is obtained:

P (t) = -APn(t). (4.651)
Pn_k(t) + APn_k(t) =y Pm-k+1(t) k=1,2,...
and
Po-k(t) T M Pkt =APR _ (t) k=0,1,2... . (4.652)
Using the initial conditions:
Pn(o) =1 ,
Pn_k(o) =0 k=1,2,3,...
and
Pm_k(o) =0 k =0,1,2,...

Trivedi and Shooman?® show that the solutions to this system of equations are:

k -At k k=-j
_ [ A e 1 . t _qykt1 -(u-A)t
Pn_k(t) = ( ) ;é% - N Tk < F ,{( 1) Ciei®

p - )w J
¢ (-1 dkj} k=0,1,2,... (4.653)
4-118
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i vhere the constants {ij} and {dkj} are given by:
#l . ko = 0, k1 T 1, dko =1 ; k=0,1,2,..., (4.654)
i B ktj-1
::;l'\ 2 ckj =('. k = 2,3,00. ; j = 2,3,.-., k » (40655)
J-1
% Eﬁ and
3
SR +j-1
':ti [_\':" ko = j'l k = 1)2”“ ’ J = 1’2"'°; k ’ (4.656)

E‘" ?_} and
oo K Y, . k=)
ki o p (t.) = l EA k+l e"At k,j+1 . t
\“ ‘_f' - y N . . (]
) T VY %0 (- M7 (k- )
i {(-1)5 + (-1 e‘(“‘*)t} b k=0,1,2,... (4.657)
where the constants {Yk,j +1} are given by:
H Yk 1 = 1 ; k = 0’1’2’00- (4&658)
’
£ ktj-1 .
E}: Y i = ; k=1,2,3,... j=2,3,...,k . (4.659)
- . o j=1
F In the general case of Model I, where the rates are assumed functions of the
W number of errors discovered, the previous set of differential equations becomes:
Fﬁ B (t) = -A(0) P_(t) (4.660)
Pn_k(t) + A(k) Pn_k(t) = p(k-1) Pm_kﬂ(t) k =1,2,3,... (4.661)
p and
3 Bo(t) + H(K) B (t) = A(K) B (t) ; k=0,1,2,... (4.662)
[ under the same initial conditions given before. Trivedi and Shooman recommend
that this system of differential equations be solved numerically using the Runge-
i-‘j_‘. Kutta Approach.
N
" For Model II, if the rates are constant, exactly the same solution as ob-
X tained for Model I with constant rates is obtained. For the general case, i.e.,
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the rates considered as functions of time, ti=re is an analogous set of differen-
tial equations as obtained in Model I; namely,

*

B (£) = -A(t) B _(t) , (4.663)

Bt ¥+ ME) B (6) =nu(e) B (8) k=1,2,..., (4.664)
and

B (t) +ue) B (£) = ACe) P _ (t); k=0,1,2,.... (4.665)

The initial conditions are the same as those as given in Model I.

The solutions to this system of equations may not even exist in closed form.
As for Model I, numerical solutions must therefore be relied upon, Trivedi and
Shooman's paper is referred to for additional details.

The data required to implement this model are:

Data Requirements

(a) The error detection rate between the times of error occurrence which is
either expressed as a function of the number of errors detected or as a function
of time.

(b) The error correction rate between the times of error occurrence which is
expressed either as a function of the numbers of errors detected or time.

The interesting aspect of this model, aside from the Markovian aspect, is
that no parameters are estimated. The error detection and correction rates are
needed as input into the model formulation. If these are unknown, which is the
usual situation, they need to be estimated. In the example application considered
by Trivedi and Shooman, empirical estimates of the rates are obtained as ~ func-
tion of time by using the number of software error reports per month for the de-
tection rate and the number of closed software error reports per month for the
correction rate. Sukertl? uses the number of errors found and corrected per day
as reported in software error forms to estimate the rates in this application. It
employs standard regression analysis as well as fitting some nonlinear functions
to the data to estimate the curves A{t) and m(t). '

4.4.2 Littlewood's Semi-Markov Model

The last model considered in this paragraph was proposed by Bev Little-
wood.”4’ 75 The model incorporates the structure of the program in developing its
availability. One of the major weaknesses of the previous time-depende-t models
is that the structure of the program is not considered in determining its reli-
ability. Littlewood adopts a modular approach to the software and att~mpts to
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tion. The program comprises a finite number of modules with exchanges of control
between them that follow a semi-Markov law. The time spent in a given module can
be taken as a random variable with any distribution (hence, semi-Markov) which is
characteristic of the module and the module that it transitions to. The specific
assumptions of this model are:

i‘ describe this structure via the program's dynamic behavior using a Markov assump-

IFY = oR ol DPRE S WPl N

o =Y

LYW o
L

.z

Model Assumptions

NNy A
g

e

e (a) The program is composed of M modules. Transitions between modules are
Fﬁ .such that the probability that the program terminates one module to enter another
= is independent of the time the first module is entered (semi-Markov property).

Sk T

E
g

R
‘e

N (b) When the program is in module i, the failures are assumed to follow a
3 Poisson process with parameter V..
2 (c) When module i calls module j with probability pij’ the probability of a

failure in the interface between the two modules is “ij'

. - .
QP S

%ﬁ fn (d) The distribution of the time spunt in module i before entering module j
o N depends upon only i and j and is known only via the first two moments p1lJ and
BN 11 .

v i H2 J .

ol (e) The program is operated in a similar manner as the anticipated opera-

tional usage.

{ gz SN
e,
'

2
C
B

(f) Each failure results in a random variable cost. The random variables
are assumed independent with distributions dependent on the module or interface in
which the failure occurs. The distributions are only known through their first
two moments.

€
a

M S

N o |

. The last assumption is optional; it is only needed if an overall failure cost
Fg analysis is needed.

Suppose N(t) is the total number of failures (both within modules andl be-
tween) observed in the program in the time interval (0,t). Deriving the distri-
bution of N(t) for a specified t is an extremely difficult if not impossible task.
A complete description of the behavior of N(t) requires knowledge of the distribu-
tions of times within modules, a requirement that is usually unattainable in prac-
tice. Littlewood derives an asymptotic result pertaining to the behavior of N(t).
If the very plausible assumption for a modular program is made that the individual
failure rates are much smaller than the switching rates between modules, then the
failure point process of the integrated program is asymptotically a Poisson pro-
cess with rate parameter
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as v,, o,. » 0 where [ = {M1,} satisfies 1 + P = I with f& n, =1 and P is the E1
i? Tij ~ i ~ ~ el i

MxM transition matrix of the system.

The interesting aspect of this result is demonstrated by rewriting the pre- L
- vious expression; i.e., if

e R )
N )
[Thd M [;
Pl S ij -J

" ‘p‘ “1
ol 4. = j=1 =1 (4.667) -
’ i M M 1 ‘ gﬁ
i=1 j=1 ;
" and ' 4

n,p,. '
b, = ———1 i (4.668) ﬁ
A : |

Z 2 n'p ‘pllj i,
i=1 j=;1 Y \

‘-

then the previous expression can be reexpressed as:

M M g& o
.+ N T 4.66
i§1 a,v, iz=:1 b13a13 . , (¢ 9)

i=1

s

The a, represents the limiting proportion of time spent in module i while bij is

the limiting frequency of i to j module transfers. It is often possible to esti-~
mate them directly. An extremely complex description of the behavior of N(t) is
therefore represented asymptotically in a very simplistic manner.

A ;.

Suppose interest is also in a failure ccst analysis, If Yi(t) represents the

random variable for the cost of a failure in module i, and Yij(t) repregedts the

random variable cost of a failure in transfer from module i to j, the total pro-
gram cost is: i

=77

T
nlas

M M .

Y(t) = ) Y, () + f: ) Y. (1) . (4.670) E
i=1 i=1 j=1 4

i#j
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Again the exact description of Y(t) is extremely complex if not impossible to de-
velop. Littlewood develops an asymptotic result which depends only upon the means
and variances of the defining distributions. He shows that:

¥(e) - pt (4.671)

oF —— NO,D)

where p is the (asymptotic) mean cost incurred per unit time for the integrated
program and is: '

ijV-N1i +oa, ., P1ij)
2 2J (4.672)

3

where p11 and “113 are the means of Yi’ Yij respectively.

The reader is referred to Littlewood's papers for additional details pertain-
ing to this result and a definition of o©.

The major problem with this model, as with the previous case is that all of

the parameters that make up the model are input; therefore, they must be known or
estimated. The data required for thisz model are:

Data Requirements

(a) The transition probabilities from modules i to j, i.e., the pij's.
(b) The error rates within the modules i, i.e., the vi's.

(c) The first two moments of the distribution for the time spent in module
i before transferring to module j, i.e, the ullJ's and pzlJ's.
(d) The probabilities of failures occurring at the interfaces between

modules, i.e., the aij's,

(e) If a cost analysis is desired, the first two moments of the cost distri-
butions of failure within and between modules.

As can be seen, the data required can easily prohibit the use of this model.
An additional factor to counsider before applying this model {and the previous one)
is assuring that the Markov property is satisfied. This could prove the most
formidable problem of all in applying Markov Models.
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CHAPTER 5
COMPARISON OF RELIABILITY MODELS

For this part of the report, some studies and the results pertaining to
comparing the performance of the various reliability approaches and models on
software error data sets are described. Ary common conclusions that have been
reached among the studies are pointed out. The studies described 2ll involve the
comparison of at least three or more software reliability models. Excluded are
various individual studies that have been done on a given software model only.
This includes the results of applying Musa's Model to error data sets 5455 aud
Littlewood's Bayesian Mode). Musa's Model has been applied to actual software
error data, with some success. Littlewood also has applied his Bayesian Model to
some data sets with a good match obtained between the predicted and actual error
observations. However, this comparison is strictly concerned with results that
can be given in the performance of onme reliability model in contrast to another.
From these studies, some guidelines can be established for employing a model in a
given situation. In this paragraph, the analysis is limited to the Time Domain
Approach rather than Error Seeding/Tagging and the Data Domain Approaches since
no major studies have been done to compare the performance of the different ap-
proaches. The first major effort was made by Alan Sukert of the Rome Air Develop-
ment Center.17'76>77 The study involves five major models: The Jelinski-Moranda
Model (Paragraph 4.2.3), the Schick-Wolverton Model (Paragraph 4.2.4), a modified
Schick-Wolverton Model (Paragraph 4.2.4.1), and Geometric (Paragraph 4.2.6) and
Modified Geometric Models (Paragraph 4.2.6.1). Other models were considered but,
due to data requirements for these models (e.g., CPU time), could not be used.
The chesen models were applied to four large scale DOD software projects. Using
the software error reports filed for each of the projects, the error counts per
day and per week were used as input into the software models. (All models were
modified to allow more than one error per time frame.) The study considered
estimates for the respective models obtained from maximum likelihood and least
square procedures.

The basic conclusions drawn from this comparative study are:
(a) The grouping by weeks does better in predictive ability than by the day.

(b) The Jelinski-Moranda and Schick-Wolverton Models give reasonable predic-
tions for small projects while the modified Schick-Wolverton Model does better for
larger ones.

(¢) The Geometric Models are better to use when the MTBF or reliability
estimates are of concern.

A major problem experienced in the application of these models in this study (as
in the others) is the problem of convergence. The estimation procedures failed
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in many instances to come up with model parameter estimates. This is discussed
in some detail after the next study is described.

The second major comparative effort was undertaker by Hughes Aircraft Com-
pany.3¥ The study involves the Generalized Poisson Model of Paragraph 4.2.5 with
g(X1,...,Xn) = Xu; (o unknown), a binomial model and the Nonhomogeneous Poisson

Process Model of Paragraph 4.2.9. The various models employ both maximum likeli- &ﬁ
hood and least squares in the estimation of model parameters. These models are ’
applied to 16 sets of electronic's system computer program software data. The
major conclusions reached are:

(a) Generally, the model fits to the data are poor, but the best fitting of

the three and the one applicable to the most data sets is the Generalized Poisson Lq
Model, N

(b) Grouping the error data by a time period has better convergence proper~ 4
ties than ungrouped. K . &

(¢) Maximum likelihood and least squares estimates for a given model are N
similar. | . - &ﬂ

" The major problem of lack of convergence to parameter estimates was experi-

enced in this study as well. The authors suspect, as does Sukert in the previous "
study, that a major problem causing this lack of convergence is violation of the k} -
assumptions on which the models are based, especially the violation of a nonin- A
creasing error rate. The Hughes report finds that by plotting the estimated error i
rate whenever it is increasing in a region is precisely the region in which con- ﬁﬁ Sl
vergence problems are experienced. The types of convergence problems encountered o I

include lack of convergence, oscillation, convergence to a nonoptimal solution, Loy
and nonuniqueness of the solution. These problems are especially experienced by
the MLEs. The report employs a second derivative criterion to weed out nonoptimal
solutions, but the report points out that this cannot be relied on completely
because of computer precision problems in finding the optimal solutions.

£13
?-l'

R
r T~
-

The third study was undertaken by Dayton University under contract to the Air
Development Center.l® The study applied the Jelinski-Moranda Model, the Geometrir
Model, the extended Jelinski-Moranda Model (Paragraph 4.2.3.2), and Schneidewind's
Model with approach (c) (Paragraph 4.2.8) to software error data. The first two
are applied to two data sets in which the times between error occurrences are
recorded while the latter two are applied to two data sets in which the error
counts are recorded. The conclusions are:

(a) If the times between error occurrences are available, the Geometric
Model does a better predictive job, but if the error counts per time interval are
available, the Schneidewind Model is preferred.

(b) The extended Jelinski-Moranda Model and Schneidewind's Model give simi-

lar results, but the extended Jelinski-Moranda Model is very sensitive to changes
in the data.
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; (¢) The Jelinski-Moranda Model tends to estimate a smaller number of errors
'E remaining than the Geometric Model, illustrating the "optimistic" tendency of the
N ' exponential class of distributioms.
e
ﬁ t§ The fourth study was performed by the University of Utah.32 In contrast to
A the previous three studies, this study compares a number of models using deter-
i ministically generated error data rather than actual data. The times of error
: FD occurrences are generated on a computer, following the underlying model with known
S model parameters. The models considered include: the Jelinski-Moranda Model, the

Geometric Model, and Musa's Model. A Monte-~Carlo study of the behavior of the
least squares and MLEs was undertaken. The results of this study are:

(a) A strong positive correlation is indicated among the various estimates
for total number of errors,

*TET ¥ (3

(b) The estimate of the MTBF is best for the Geometric Model,

-
.l

b 3 (¢) The accuracy of the estimates increases as either the total number of
Nl errors increase or the number of errors remaining decreases, and

E

-
P
25

. (d) The least squares estimation, using the times between error occurrences
- rather than the actual times of the occurrences, doe¢s not perform as well as the
- other estimators.

iﬁ The last few paragraphs summarize the results of the various studies under-

taken to compare the various models. As can be seen from the studies, additional
comparative research is needed. Many of these, studies employed error data that
N were gathered without the data requirements or assumptions of the various models
E\ in mind. What is needed is a large scale effort in which the data are gathered
under a controlled environment. Currently such a study involving the Nonhomo-
genous Poisson, the IBM Poisson Model, the Generalized Poisson Model, the
Fﬂ Jelinski-Moranada Model, and the Geometric Poisson Model is being undertaken
4 by Hughes Aircraft for the Rome Air Development Center. The data are being col-
lected specifically for software reliability applications. Although the final
report is not written yet, an interim report (Reference 78) finds some results
similar to the previous studies. Specifically, the major problem of convergence
and the violation of the model assumptions are found. Again the major violation
[ is an error rate that is nonconstant during a testing interval and nondecreasing
Pd over all intervals.,

“ It is difficult, based upon the results of the studies, to provide clear
tf cut guidelines in applying the software models. We can only conjecture. Out
) of the various models considered, it appears that the Generalized Poisson or
Schneidewind's Model approach (c) might be best suited for count data. The
Geometric Models should be considered when estimating MTBF. The convergence

B problem appears to diminish as the length of the testing period increases. How-

ever there is no method to determine what the optimal length of a testing in-
» terval should be. This depends upon the underlying error generation process which
Ej is not known.
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Many of the models discussed in this report have yet to be compared on the
basis of performance with others. None of the Bayesian Models, Markov Models,
the Error Seeding/Tagging Models, or the Data Domain Approach to software reli-
ability modeling have been included in any comprehensive study. (Note: Hughes'
current research will incorporate Littlewood's Bayesian Model). This report can
only present what has been done and what those limited results indicate. Much is
yet to be done-if it even can be done. A large scale controlled-data collection,
in which the CPU time and wall clock time are simultaneously gathered for the
purpose of comparing as many different models as possible, may be economically
and administratively infeasible. Moreover, for the modeling of software error
generation, no one model is applicable in all instances. The software analyst
needs a collection of software models which have demonstrated themselves in
various environments and comparative studies. From this collection, the analyst
judiciously selects the one most applicablz to his/her situation. Flexibility and
adaptability are the keys to successful modeling.
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{ Fj CHAPTER 6 )
Y '
- "QUICK" USTIMATES OF SOFTWARE RELIABILITY MEASURES
Eg This last paragraph briefly presents some proposed “quick" estimates for
i various software reliability measures. These procedures do not require the exten-
) {j sive error data base of the previous sections. The view taken toward software
b reliability is very simplistic and pragmatic in nature. The two procedures dis-
cussed are not advocated in this report, but are included for completeness. The
T purpose of this report is to review.all of the various procedures that are advo-
) tﬂ\ cated in determining the reliability status of a set of software. -
!
6.1 MTBF ESTIMATION

This wvery simple measure of MIBF twas proposed by Gregory' Hansen of Systems

5 Engineeriny Laboratories.?’® When a software program is first released, there are
Lr only a few users and hence the failure generation is a minimum. This means that
the MTBF is fictitiously high, giving the software manager a false sense of secur-

ii ity. As the software begins to be used, the MIBF can be expected to rise slightly

RANRREY . N

e O T3

as the initial gross errors are dlscovered and eliminated. However, in later
years as more and more users test the software, the MIBF drops 51gn1ficantly.
Finally, tne software reaches a "mature" state and the MIBF iacreages sharply

o~ S
EAERJELEY - T S

Boru
N -:A
3 {m This behavior is reflected in the following formula.
-
' ¢ (N, + N, .+ ... ¢ N Y*C
\ - i i-1 I+1
! 2 MIBE(5) = ] ~ (6.1)
» 1
-
X Eﬁ where M, = number of software errors discovered in year i,

MTBF(i) = MIBF for year i,

AR bt

Ni = Number of copies of the program in use for year i,
HORy I = Number of years the program has been used,
[ B

and C = Estimates of the average number of hours that the product is used
in a year.

An example calculation is as follows. Supposs the MTBF is desired for year i = 3
with the software being distribnted to users for 2 years. During the third year,
there has been a total of 10 users and during the second, a total of 5 users. The
estimated average number of hours that the program is used during the third year
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is 500 hours. During the third year, a total of 100 errors have been observed.
The formula

{ : *
wipp . e e *N2¥C (30 + 5)#500
3 M3 100

= 75 hrs (6.2)

reflects the total estimated number of hours of use by all users during the given
year, divided by the number of errors found during the year. The function can be
plotted against time te .see the error behavior of the software package. Once the

- program reaches. maturity, future values of MIBF can be predicted by extending the

curve.

6.2 PRAGMATIC SOFTWARE RELIABILITY ESTIMATION

The last method considered is proposed by John Wsll and Paul Ferguson.®80
Using the basic premise that the failure rate of software decreases as more soft-
ware is used and tested, they formulate a relationship between the number of fail-
ures end the "maturity" of the software. Specifically, the relationship proposed
is: ‘ L : , L

where C is the cumulative aumber of errors experienced for a software program of
maturity M. Co and o are constants determined empirically by plotting the cumu-
lative number of errors versus the maturity level of the software. Mo is a scal-
ing constant. Typically, the units of M and My are expressed as: amount of
calendar time expended, processor or CPU time, man-months of testing, or the num-
ber of tests executed.

The failure rate, R, is then determined as

. 9
_ode d (M/Mg) (: >°‘

For convenience this is expressed as:

. %o (e " (6.5)

where Ro is simply a constant. Again the terms Ro and o can be determined empiri-
cally from the data. For example, failures per CPU second can be plotted versus
number of CPU seconds of operation to determine Ry and a. Care must be taken to
ensure consistency of the units in the functional relationships.

The application of this method is applied to a number of data sets in their
paper. The reader is referred to that paper for additional details.
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CHAPTER 7

[ oy s %]
B el

SUMMARY AND CONCLUSIONS

N

X A
«Tal

With the ever increasing role that software is playing in the weapon systems

v and the increased complexity of the programs because of that role, a dramatic in-
}ﬂ crease in the cost of the software over the life cycle of the weapon system is
v seen, Greater emphasis has thus been placed in determining more cost effective
N ways of software develupment and testing. One such method that has developed over
t{ the last 10 years is the calculation of a software's reliability. By having a
b quantative measure of a program's or a program module's reliability, a software

manager can best determine the allocation of testing personnel and just how much
testing to employ before release to the user.

This report provides a review of the various approaches to estimating that

" reliability. The three major approaches are categorized as: Error Seeding/Tagg-
FQ ing, Data Domain, and Time Domain. The Error Seeding/Tagging Approach u.:es the
ut concept of error introduction into the software. Based upon the number of in-
serted errors and inherent errors found in the testing phase, the total number

ﬁ of errors still residing in the program can be estimated. The major problem
with this approach is the implementation. How are errors of the same nature and
distribution as the inherent errors inserted into a program? The Data Domain

o Approach bases the reliability estimation on the number of successful execution
. runs out of the total number of runs attempted.  In addition, the approach tries
to incorporate the input domain structure into the estimation process. The input
space is broken down into regions which are assigned probabilities based upon

FJ anticipated operational profiles. Random samples from the input space are then
at drawn according to these probabilities and the count of successful runs made

from them are used in the reliability calculation. The major weakness with this
o approach is the stratification of the input space and the resulting probability
F’ assignments.

- The last approach, which this paper deals with the most, is the Time Domain. N
F& This approach attempts to model the error generat1on process as observed over time Y
! (either CPU or wall clock). This is done using the time of error occurrence (or N
o equivalently, the time between) or the number of errors obsefved over a testing fid,
F} interval. Many of the models are based upon an underlying Poisson process for the K
o error generation over a specified time frame or an axponentially distributed ran- o
dom variable for the time between error occurrences. The Time Domain Approach can .
W itself be categorized into three types of models: '"Classical," '"Bayesian," and &8
N "Markov." The "Classical" Models can be traced back to their origin within hard- 9
ware reliability theory. Many of the concepts of hardware reliability theory ﬂqﬁ
- (MTBF, hazard rate, reliability function) are adapted to the field of software. ‘b
Eﬁ Moreover, models of this class tend to view the errors inherent in a program to be ,

of the same order of magnitude and the correction of any one of them has the same
. order of impact upon the program. The "Bayesian" viewpoint takes this impact and
kﬁ treats it as a random variable. It is not known what effect the correction of an
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error might have upon the behavior of the program. When errors are discovered
early in the testing cycle, it is expected that the most dramatic improvement
in the performance of the program occurs after their correction. Errors discover-
ed late in the cycle have the least dramatic improvement. The '"Markov'" Models
attempt to formulate the error generation process over time as a Markov process
in whichk transition probabilities are either given or derived. These probabili-
ties are the state transition probabilities for moving from one state to another.

} As in the previous approaches, the Time Domain also has its share of prob=-
e lems. The Markov Models are extremely complex and difficult to apply. Most
? of the results are either for special cases or are asymptotic in nature. The
; Bayesian Models represent a more realistic approach to modeiing the actual error
generation/correction process. The difficulty here, as with the Bayesian theory
in general, is the specification of a prior distribution for the error rate. In
addition, little has been done in comparing this class of models to models of a
“"classical" nature. The major weakness for the Classical Models is an oversen-
sitivity to the violations of the assumptions upon which they rest. They are
especially sensitive to an increasing failure rate within the data. This in-
creasing rate may be due to many reasons: introduction of new errors in the
correction process, nonuniform testing, and nonuniform application of testing man-
power throughout the testing cycle. The last two are especially common occur-
rences in typical software testing programs. Another problem that these models
face is a lack of independence among the errors. In many instances, the dis-
covery of one error quickly leads to others generating a "clumping' effect of the
errors over time. These various violations lead to poor fits of the models and
convergence problems in the estimation process.

Various studies have been undertaken to compare the performance behavior
among the models, but no clear superior model has arisen. It is felt by this
author that no one model can be advocated for all applications. A collection of
models that have demonstrated themselves over a large class of problems should be
considered. The coftware analyst should then pick from this class the one that
is most effective in modeling his/her set of data. Modeliny has always becen an
interative procedure, it includes choosing a candidate model, estimating the
parameters of the model, testing the adequacy of the model, and cycling back if
necessary.

Much research is yet to be done in this new field; however, software reli-
ability modeling can provide an effective aid to the software manager. Somc¢ of
the applications of these models demonstrate this. What is to be kept in mind,
however, is that it is one of many tools available in developing cost effective
software. By careful consideration of the collection of data for these models, to
ensure the model assumptions are satisfied as much as possible, and by using a
collection of models that appear "robust" to violations of aspumptions which can-
not be met, the models provide a useful aid. Using the common techniques of
modeling, the chosen model can be a useful quantitative measure to determine the
length of testing and manpower utilization. Otherwise, if the uwsnager is asked,
"What led you to make the decision to release the software?" What can he say?
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